

HYBRID FDD/TDD 2307 mm INTEGRATED RET	MQ4/MQ5 CONNECTORS
FT-BBJJMMUTY23-I0	
Features This antenna provides a hybrid FDD/TDD configuration with 14-port FDD and 8T8R beamforming 3.5 GHz for advanced use in low and high bands with the support of L-Band (1.4 GHz) and 5G introduction.	
 4 ports / 2 cross pol systems in low band (700/800/900 MHz) 4 ports / 2 cross pol systems in high band with L-Band support (1427-2200 MHz) 4 ports / 2 cross pol systems in 2.6 GHz (2495-2690 MHz) 2 ports / 1 cross pol system in very wide high band (1427-2690 MHz) 8 ports 3300-3800 MHz +1 calibration port for TDD 8T8R beamforming support (MQ4/MQ5 connectors) Horizontal spacing between 8T8R columns: 42 mm SRET (default) and MRET (configurable on site) support Integrated and field replaceable SRET ACU HW version: JD6L00001 Compliant with AISG v2.0 and 3GPP Site sharing support (dual primary) 	Image Coming Soon

		TDD							
	Frequency Range (MHz)	(2x) 69	94-960	(2x) 142	27-2200	(2X) 249	95-2690	(1X) 1427-2690	(8T8R) 3300-3800
IΕV	Array	📕 R1	📕 R2	B 1	B 2	<mark> </mark>	Y 3	<mark> </mark> Y2	P1
VERV	CONNECTORS	4 PORTS		4 PORTS		4 PORTS		2 PORTS	2 CLUSTER CONNECTORS - 8 PORTS
		4.3-10 Fe		4.3-10	Female	4.3-10	Female	4.3-10 Female	MQ4/MQ5
DUC	Polarization	XPOL		XPOL		XPOL		XPOL	XPOL
PRO	Azimuth Beamwidth (avg) 65°		5°	65°		65°	90° Unit Beam		
	Electrical Downtilt	2-1	12°		2-1	12°		2-12°	2-12°
	Dimensions 2307 x 475 x 242 mm (90.8 x 18.7 x 9.5 in)								

ORDERING OPTIONS Select from the following ordering options

ANTENNA MODEL NUMBER	CONFIGURATION	MOUNTING HARDWARE	MOUNTING PIPE DIAMETER	SHIPPING WEIGHT
FT-BBJJMMUTY23-I0	ACU-X20 Internal RET Included	APM40-5E Beam Tilt Kit Included	60-120 mm (2.4-4.7 in)	71 kg (156.5 lbs)

Quoted performance parameters are provided to offer typical, peak or range values only and may vary as a result of normal testing, manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to products may be made without notice.

ELECTRICAL SPECIEICATIONS

Hybrid FDD/TDD Panel Antenna 14 Ports FDD (2x) 694-960, (2x) 1427-2200, (2x) 2495-2690, (1x) 1427-2690 MHz (65°)

8T8R 3300-3800 MHz (90° Unit Beam)

HYBRID FDD/TDD

2307 mm INTEGRATED RET MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

ELECTRICAL SPECIFICATIONS							
	MHz		694-960				
	MHz	694-793	790-896	880-960			
			±45°				
ver all Tilts	dBi	14.8 ± 0.5	15.1 ± 0.4	15.1 ± 0.5			
ax Gain	dBi	15.3	15.5	15.6			
th (3 dB)	degrees	65.4° ± 7.8°	61.9° ± 6°	56.4° ± 8.6°			
dth (3 dB)	degrees	10.9° ± 0.8°	9.8° ± 0.8°	8.8° ± 0.7°			
	degrees	2-12°					
	Ohms		50Ω				
5)			1.5:1 (-14 dB)				
lation	dBc	-1	53 (3rd Order for 2x20 W Carrie	ers)			
o, Total Power, ± 30°	dB	21.6	22	21.3			
obe Suppression	dB	17.9	18.9	14.9			
ctor	dB	6.1	6.1	7.4			
nination (XPD) esight (0°)	dB	15.4 15.4 16.2					
e Power Per Port	Watts	300 W					
on	dB	25					
1	dB		20				
	ECIFICATIONS	ECIFICATIONS MHzMHzMHzMHzver all TiltsdBiax GaindBih (3 dB)degreesdth (3 dB)degreesdth (3 dB)degreesdth (3 dB)degreesof degreesOhmsof colspan="2">of colspan="2">Ohmsof colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2">of colspan="2">degreesof colspan="2">of colspan="2"of colspan="2">of colspan="2" </td <td>MHz MHz MHz 694-793 ver all Tilts dBi 14.8 ± 0.5 ax Gain dBi 15.3 h (3 dB) degrees 65.4° ± 7.8° dth (3 dB) degrees 10.9° ± 0.8° degrees 00 ms 0 jobs 00 ms 10.9° ± 0.8° of th (3 dB) degrees 10.9° ± 0.8° degrees 0.10.9° ± 0.8° 10.9° ± 0.8° of th (3 dB) degrees 10.9° ± 0.8° of th (3 dB) dB 11.9° ot of th (3 dB) dB 11.9° ot of th (0°) dB 15.4° of th (3 dB) dB</td> <td>ECIFICATIONS MHz 694-960 MHz 694-793 790-896 $\pm 45^{\circ}$ ver all Tilts dBi 14.8 \pm 0.5 15.1 \pm 0.4 ax Gain dBi 15.3 15.5 h (3 dB) degrees $65.4^{\circ} \pm 7.8^{\circ}$ $61.9^{\circ} \pm 6^{\circ}$ th (3 dB) degrees 10.9^{\circ} \pm 0.8° $9.8^{\circ} \pm$ 0.8° th (3 dB) degrees 10.9^{\circ} \pm 0.8° 2.12° Ohms -2.12° 2.12° 50Ω ation dBc 21.6 22 0 $$ $1.5.1 (.14 dB)$ $4B$ ation dBc 21.6 22 0 B 21.6 22 0 B 17.9 18.9 0 dB 6.1 6.1 0 B 15.4 15.4 0 B 15.4 20</td>	MHz MHz MHz 694-793 ver all Tilts dBi 14.8 ± 0.5 ax Gain dBi 15.3 h (3 dB) degrees 65.4° ± 7.8° dth (3 dB) degrees 10.9° ± 0.8° degrees 00 ms 0 jobs 00 ms 10.9° ± 0.8° of th (3 dB) degrees 10.9° ± 0.8° degrees 0.10.9° ± 0.8° 10.9° ± 0.8° of th (3 dB) degrees 10.9° ± 0.8° of th (3 dB) dB 11.9° ot of th (3 dB) dB 11.9° ot of th (0°) dB 15.4° of th (3 dB) dB	ECIFICATIONS MHz 694-960 MHz 694-793 790-896 $\pm 45^{\circ}$ ver all Tilts dBi 14.8 \pm 0.5 15.1 \pm 0.4 ax Gain dBi 15.3 15.5 h (3 dB) degrees $65.4^{\circ} \pm 7.8^{\circ}$ $61.9^{\circ} \pm 6^{\circ}$ th (3 dB) degrees 10.9^{\circ} \pm 0.8° $9.8^{\circ} \pm$ 0.8° th (3 dB) degrees 10.9^{\circ} \pm 0.8° 2.12° Ohms -2.12° 2.12° 50Ω ation dBc 21.6 22 0 $$ $1.5.1 (.14 dB)$ $4B$ ation dBc 21.6 22 0 B 21.6 22 0 B 17.9 18.9 0 dB 6.1 6.1 0 B 15.4 15.4 0 B 15.4 20			

Specifications follow BASTA guidelines.

– D2

			■ KZ				
Frequency R	Range	MHz		694-960			
		MHz	694-793	790-896	880-960		
Polarization				±45°			
Calia	Over all Tilts	dBi	14.7 ± 0.4	15 ± 0.5	15 ± 0.4		
Gain	Max Gain	dBi	15.1	15.5	15.4		
Azimuth Bea	amwidth (3 dB)	degrees	$65.7^{\circ} \pm 4.5^{\circ}$	62.5° ± 5.7°	57.4° ± 9.1°		
Elevation Be	eamwidth (3 dB)	degrees	10.8° ± 0.7°	9.8° ± 0.7°	8.7° ± 0.5°		
Electrical Do	owntilt	degrees		2-12°			
Impedance		Ohms					
VSWR (Retu	rn Loss)			1.5:1 (-14 dB)			
Passive Inter	rmodulation	dBc	-1	53 (3rd Order for 2x20 W Carrie	ers)		
Front-to-Bac	ck Ratio, Total Power, ± 30°	dB	20.9	22.3	21.1		
First Upper :	Side Lobe Suppression	dB	17.2	17.1	13.9		
Cross-Pol O	ver Sector	dB	6.7	6.8	6.7		
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		dB	15.8	15.5	16		
Maximum Effective Power Per Port Watts		300 W					
Cross Polar Isolation dB		25					
Interband Is	olation	dB		20			
		`		Specifica	ations follow BASTA guidelines		

8T8R 3300-3800 MHz (90° Unit Beam)

HYBRID FDD/TDD 2307 mm

INTEGRATED RET

MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

ELECTRICAL SPECIFICATIONS SIDE COLUM			5	E	31 / 📒 Y1 FILTE	RED			
Frequency Ra	ange	MHz		1427-2200 / 2495-2690					
		MHz	1427-1518	1695-1880	1850-1990	1920-2200	2490-2690		
Polarization					±45°				
Cain	Over all Tilts	dBi	14.7 ± 0.5	15.9 ± 0.9	16.3 ± 0.8	16.8 ± 1	16.5 ± 0.4		
Gain	Max Gain	dBi	15.2	16.8	17.1	17.8	16.9		
Azimuth Bear	mwidth (3 dB)	degrees	$72.4^{\circ} \pm 4.7^{\circ}$	64.1° ± 7.8°	57.1° ± 3.8°	53.9° ± 5°	50.9° ± 3.2°		
Elevation Bea	amwidth (3 dB)	degrees	$8.8^{\circ} \pm 0.5^{\circ}$	7.1° ± 0.4°	6.7° ± 0.4°	6.1° ± 0.6°	5.3° ± 0.4°		
Electrical Dov	wntilt	degrees			2-12°				
Impedance		Ohms	50Ω						
VSWR (Return	n Loss)				1.5:1 (-14 dB)				
Passive Interr	modulation	dBc		-153 (3rd	d Order for 2x20 W	Carriers)			
Front-to-Back	Ratio, Total Power, ± 30°	dB	20.6	22.1	23.9	22.7	21.6		
First Upper S	ide Lobe Suppression	dB	19.8	23.5	19.9	19.6	17.3		
Cross-Pol Ov	er Sector	dB	6.6	5	0.5	0.5	0.9		
Cross Polar D at Mechanica	Discrimination (XPD) Il Boresight (0°)	dB	23.3	15.7	15.5	15.6	16		
Maximum Eff	ective Power Per Port	Watts			300 W				
Cross Polar Is	solation	dB	25						
Interband Iso	lation	dB			22				

Specifications follow BASTA guidelines.

ELECTRICAL SPECIFICATIONS SIDE COLUMNS

B2 / Y3 FILTERED

Frequency Ra	inge	MHz		14	27-2200 / 2495-26	90				
		MHz	1427-1518	1695-1880	1850-1990	1920-2200	2490-2690			
Polarization				±45°						
Cain	Over all Tilts	dBi	14.6 ± 0.4	15.9 ± 0.7	16.4 ± 0.7	16.9 ± 1	16.4 ± 0.5			
Gain	Max Gain	dBi	15	16.6	17.1	17.9	16.9			
Azimuth Bear	nwidth (3 dB)	degrees	72.3° ± 3.9°	63.9° ± 7.8°	56.4° ± 3.5°	53.7° ± 4.7°	50.7° ± 2.7°			
Elevation Bea	amwidth (3 dB)	degrees	$8.8^{\circ} \pm 0.4^{\circ}$	7.1° ± 0.4°	6.6° ± 0.4°	6.1° ± 0.6°	5.2° ± 0.5°			
Electrical Dov	vntilt	degrees			2-12°					
Impedance		Ohms			50Ω					
VSWR (Return	Loss)				1.5:1 (-14 dB)					
Passive Interr	nodulation	dBc		-153 (3rc	d Order for 2x20 W	Carriers)				
Front-to-Back	Ratio, Total Power, ± 30°	dB	21.6	23.3	25.1	23.6	21.8			
First Upper S	ide Lobe Suppression	dB	18.5	22.6	19.6	19.2	17.9			
Cross-Pol Ov	er Sector	dB	7	4.4	0.5	0.7	0.9			
Cross Polar D at Mechanica	liscrimination (XPD) l Boresight (0°)	dB	22.1	16.9	17	16.1	15.1			
Maximum Eff	ective Power Per Port	Watts			300 W					
Cross Polar Is	olation	dB	25							
Interband Iso	lation	dB			22					

Specifications follow BASTA guidelines.

HYBRID FDD/TDD

2307 mm INTEGRATED RET MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

ELECTRICA	L SPECIFICATIONS CE	NTRAL COL	JMN		– 1	Y2			
Frequency Ra	ange	MHz		1427-2690					
		MHz	1427-1518	1695-1880	1850-1990	1920-2200	2300-2500	2490-2690	
Polarization					±4	15°			
Gain	Over all Tilts	dBi	15.7 ± 0.4	17.1 ± 0.5	17.4 ± 0.3	17.6 ± 0.5	17.5 ± 0.4	18.2 ± 0.4	
Gain	Max Gain	dBi	16.1	17.6	17.7	18.1	17.9	18.6	
Azimuth Bear	mwidth (3 dB)	degrees	71° ± 6.1°	$60.2^{\circ} \pm 6.4^{\circ}$	59.9° ± 5.2°	63.1° ± 7.3°	59.1° ± 4.1°	53° ± 2.9°	
Elevation Bea	amwidth (3 dB)	degrees	grees $8.5^{\circ} \pm 0.3^{\circ}$ $7.1^{\circ} \pm 0.5^{\circ}$ $6.5^{\circ} \pm 0.2^{\circ}$ $6^{\circ} \pm 0.5^{\circ}$ $5.3^{\circ} \pm 0.2^{\circ}$				5° ± 0.2°		
Electrical Do	wntilt	degrees	2-12°						
Impedance		Ohms	50Ω						
VSWR (Retur	n Loss)				1.5:1 (-14 dB)			
Passive Intern	modulation	dBc		-1	53 (3rd Order fo	or 2x20 W Carrie	ers)		
Front-to-Back	k Ratio, Total Power, ± 30°	dB	27.7	28	29.5	28.7	28.8	29.3	
First Upper S	ide Lobe Suppression	dB	18.7	17.5	18.8	19.3	24.1	21.9	
Cross-Pol Ov	er Sector	dB	12.5	11.4	9.5	2.8	0.4	1.6	
Cross Polar D at Mechanica	Discrimination (XPD) Il Boresight (0°)	dB	21.9 20.4 19.3 19.3 19.2 1				16.1		
Maximum Eff	ective Power Per Port	Watts	s 300 W						
Cross Polar Is	solation	dB	25						
Interband Isc	lation	dB			2	8			

Specifications follow BASTA guidelines.

ELECTRICAL SPECIFICATIONS		P1-P4 TDD Beamforming - Cal. Board				
Frequency Range	MHz		3300-3800			
	MHz	3300-3400	3400-3600	3600-3800		
Vertical Spacing Between Dipoles	mm	65 (0.77 Lambda)	65 (0.77 Lambda)	65 (0.77 Lambda)		
Horizontal Spacing Between Arrays	dB	42 (0.5 Lambda)	42 (0.5 Lambda)	42 (0.5 Lambda)		
Coupling Factor	dB	26 ± 2	26 ± 2	26 ± 2		
Amplitude Error Between Any Two Columns Ports and Calibration Port	dB	0.9	0.9	0.9		
Phase Error Between Any Two Columns Ports and Calibration Port	degrees	9	9	9		

Specifications follow BASTA guidelines.

HYBRID FDD/TDD

INTEGRATED RET

MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

				P1-P4				
ELECTRICAL	. SPECIFICATIONS		TDD Beamforming - Unit Beam					
Frequency Ran	ge	MHz	Hz 3300-3800					
		MHz	3300-3400	3400-3600	3600-3800			
Polarization				±45°				
Caia	Over all Tilts	dBi	15.4 ± 0.3	15.5 ± 0.3	15.8 ± 0.5			
Gain	Max Gain	dBi	15.7	15.8	16.3			
Azimuth Beamwidth (3 dB)		degrees	100.3° ± 5.5°	101.2° ± 5.6°	81° ± 43.3°			
Elevation Bean	nwidth (3 dB)	degrees	6.5° ± 0.2°	6° ± 0.5°	5.7° ± 0.3°			
Electrical Down	ntilt	degrees		2-12°				
Impedance		Ohms		50Ω				
VSWR (Return	Loss)			1.5:1 (-14 dB)				
Front-to-Back I	Ratio, Total Power, ± 30°	dB	24.6	25.5	25.9			
First Upper Sid	le Lobe Suppression	dB	18.7	15.1	17.8			
Cross-Pol Over	Sector	dB	12.6	11.5	2.5			
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		dB	24.3	16.8	16			

Specifications follow BASTA guidelines.

P1-P4									
ELECTRICAL	L SPECIFICATIONS		TDD Beamforming - Broadcasting Beam						
Frequency Rar	nge	MHz		3300-3800					
		MHz	3300-3400	3400-3600	3600-3800				
Polarization				±45°					
Caia	Over all Tilts	dBi	16.2 ± 0.5	16.3 ± 0.5	16.5 ± 0.5				
Gain	Max Gain	dBi	16.7	16.8	17				
Azimuth Beam	nwidth (3 dB)	degrees	63.3° ± 2.6°	60.6° ± 3.2°	55° ± 6°				
Elevation Bear	mwidth (3 dB)	degrees	6.5° ± 0.2°	6.1° ± 0.4°	5.8° ± 0.3°				
Electrical Dow	ntilt	degrees		2-12°					
Impedance		Ohms		50Ω					
VSWR (Return Loss)		1.5:1 (-14 dB)							
Front-to-Back Ratio, Total Power, ± 30° c		dB	28.8	28.6	30.5				

Specifications follow BASTA guidelines.

HYBRID FDD/TDD

2307 mm INTEGRATED RET MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

	P1-P4								
ELECTRICAL	SPECIFICATIONS		TDD Beamforming - Working Beam						
Frequency Ran	ge	MHz		3300-3800					
		MHz	3300-3400	3400-3600	3600-3800				
Polarization				±45°					
Gain	Over all Tilts	dBi	19.7 ± 0.5	20 ± 0.5	20 ± 0.5				
Gain	Max Gain	dBi	20.2	20.5	20.5				
Azimuth Beam	width (3 dB)	degrees	25.9° ± 1.2°	24.7° ± 0.9°	24.3° ± 1.2°				
Electrical Dowr	ntilt	degrees		2-12°					
Impedance		Ohms		50Ω					
VSWR (Return Loss)		1.5:1 (-14 dB)							
Front-to-Back Ratio, Total Power, ± 30° c		dB	34.6	34.7	34.4				

Specifications follow BASTA guidelines.

HYBRID FDD/TDD 2307 mm INTEGRATED RET MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

BOTTOM VIEW - LABELING

Image Coming Soon

ARRAY LAYOUT

ARRAY	FREQUENCY	CONNECTOR TYPE	
R 1	694-960 MHz	(2x) 4.3-10 Female	
R 2	694-960 MHz	(2x) 4.3-10 Female	
B 1	1427-2200 MHz	(2x) 4.3-10 Female	
B 2	1427-2200 MHz	(2x) 4.3-10 Female	
Y 1	2495-2690 MHz	(2x) 4.3-10 Female	
Y2	1427-2690 MHz	(2x) 4.3-10 Female	
Y3	2495-2690 MHz	(2x) 4.3-10 Female	
	3300-3800 MHz	(2x) Cluster Connectors MQ4/MQ5	
	3300-3800 MHz		
■ PI	3300-3800 MHz		
	3300-3800 MHz		

The illustration is not shown to scale.

8T8R 3300-3800 MHz (90° Unit Beam)

2307 mm INTEGRATED RET HYBRID FDD/TDD MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

Physical array and port mapping according to AISG naming convention: Left - Center Left - Center Right - Right (seen from front of antenna)

8T8R 3300-3800 MHz (90° Unit Beam)

HYBRID FDD/TDD

INTEGRATED RET 2307 mm

MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

MECHANICAL SPECIFICATIONS

Length		mm (in)	2307 (90.8)		
Width		mm (in)	475 (18.7)		
Depth		mm (in)	242 (9.5)		
Net Weight - Antenna Only		kg (lbs)	50 (110.2)		
Net Weight - Mounting Hardware Only		kg (lbs)	12 (26.5)		
Wind Load		Front	N (lbf)	607 (136)	
Rated at		Side	N (lbf)	577 (130)	
150 km/h (9	3 mph)	Rear	N (lbf)	592 (133)	
Survival Wind Speed / Rated Wind Speed		km/h (mph)	240 (150)		
Connector Type			(14x) 4.3-10 Female, (2x) Cluster Connectors MQ4/MQ5, Site Sharing Support: (4x) AISG Connectors (2 Male, 2 Female) at Bottom		
Radome Color			Light Grey RAL7035		
Radome Material			ASA		
Lightning Protection			Direct Ground		
Shipping	Packing Size (Length x Width x Depth)		mm (in)	2450 x 560 x 390 (96.5 x 22.0 x 15.4)	
	Shipping Weight		kg (lbs)	71 (156.5)	

ENVIRONMENTAL SPECIFICATIONS

Environmental Standard		ETS 300 019
Operating Temperature	degrees	-40° to +60° C (-40° to +140° F)
Product Environmental Compliance		Product is RoHS Compliant

8T8R 3300-3800 MHz (90° Unit Beam)

HYBRID FDD/TDD 2307 mm

INTEGRATED RET

MQ4/MQ5 CONNECTORS

FT-BBJJMMUTY23-I0

ACCESSORIES Accessories may be ordered separately unless otherwise indicated.

ITEM	MODEL NUMBER	WEIGHT
Beam Tilt Mounting Bracket Kit for Pole Diameter 60-120 mm (2.4-4.7 in) Shipped with antenna	APM40-5E	12 kg (26.5 lbs)

NOTES

Specifications follow BASTA guidelines.

For additional mounting information, please check External Document Links.

For Radiating Patterns: Request pattern files