

TDD 8T8R 2300-2690 MHz (90° Unit Beam)

HYBRID FDD/TDD

2690 mm

INTEGRATED RET

SITE SHARING OPTIONAL

FT-BB4LTM26-N0

FT-BB4LTM26-S0

Features

- Hybrid FDD + TDD beamforming within a radome
- 4 ports / 2 cross pol systems in low band (698-960 MHz)
- 8 ports / 4 cross pol systems in high band (1710-2690 MHz)
- TDD 8 ports + 1 calibration port in 2300-2690 MHz
- Integrated and field replaceable SRET
- Optional with Site Sharing feature (Model name suffix -S0)
- Compliant with AISG v2.0 and 3GPP

		FC	TDD			
	Frequency Range (MHz)	(2x) 698-960	(4x) 1710-2690	(8T8R) 2300-2690		
ΕW	Array	■ R1 ■ R2		<u> </u>		
OVERVIEW	CONNECTORS	4 PORTS	8 PORTS	2 CLUSTER CONNECTORS - 8 PORTS		
CT O		4.3-10 Female	4.3-10 Female	MQ4/MQ5		
2	Polarization	XPOL	XPOL	XPOL		
PRO	Azimuth Beamwidth (avg)	65°	65°	90° Unit Beam		
	Electrical Downtilt	2-12°	2-12°	2-12°		
	Dimensions	2690 x 499 x 199 mm (105.9 x 19.6 x 7.8 in)				

ORDERING OPTIONS Select from the following ordering options

ANTENNA MODEL NUMBER	CONFIGURATION	MOUNTING HARDWARE	MOUNTING PIPE DIAMETER	SHIPPING WEIGHT	MOUNTING HARDWARE WEIGHT
FT-BB4LTM26-N0	ACU-I20-B7 Internal RET Included	APM50-B2 Beam Tilt Kit Included	60-110 mm (2.4-4.3 in)	62.3 kg (137.3 lbs)	4.5 kg (9.9 lbs)
FT-BB4LTM26-S0	ACU-X20-B7 Internal Site Sharing RET Included	APM50-B2 Beam Tilt Kit Included	60-110 mm (2.4-4.3 in)	62.3 kg (137.3 lbs)	4.5 kg (9.9 lbs)

TDD 8T8R 2300-2690 MHz (90° Unit Beam)

HYBRID FDD/TDD

2690 mm

INTEGRATED RET

SITE SHARING OPTIONAL

FT-BB4LTM26-N0

FT-BB4LTM26-S0

ELECTRICAL SPECIFICATIONS				■ R1 ■ R2		
Frequency R	Frequency Range			698-960		
		MHz	698-806	880-960		
Polarization				±45°		
Gain	Over all Tilts	dBi	16.8 ± 0.5	16.8 ± 0.5	16.9 ± 0.4	
Gain	Max Gain	dBi	17.3	17.3	17.3	
Azimuth Bea	nmwidth (3 dB)	degrees	65.9° ± 8.3°	72.0° ± 5.9°	74.6° ± 3.9°	
Elevation Be	amwidth (3 dB)	degrees	8.4° ± 0.6°	7.7° ± 0.4°	7.0° ± 0.4°	
Electrical Downtilt		degrees	2-12°			
Impedance		Ohms	50Ω			
VSWR (Retur	rn Loss)		1.5:1 (-14 dB)			
Passive Inter	modulation	dBc	-153 (3rd Order for 2x20 W Carriers)			
Front-to-Bac	k Ratio, Total Power, ± 30°	dB	23.0	24.0	23.7	
First Upper S	Side Lobe Suppression	dB	18.9	18.4	15.7	
Cross-Pol Ov	ver Sector	dB	12.6	12.7	10.8	
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		dB	23.5 23.5		25.1	
Maximum Effective Power Per Port		Watts	350 W			
Cross Polar Isolation dl		dB	26			
Interband Iso	olation	dB	26			

Specifications follow BASTA guidelines.

CAL SPECIFICATIONS			Y1	Y2 Y3	Y4	
Range	MHz			1710-2690		
	MHz	1710-1880	1850-1990	1920-2170	2300-2400	2490-2690
1				±45°		
Over all Tilts	dBi	17.1 ± 0.7	17.1 ± 0.6	17.3 ± 0.6	17.0 ± 0.6	17.4 ± 0.7
Max Gain	dBi	17.8	17.7	17.9	17.6	18.1
eamwidth (3 dB)	degrees	69.0° ± 8.2°	66.8° ± 5.7°	67.0° ± 5.4°	61.1° ± 6.9°	57.3° ± 6.5°
eamwidth (3 dB)	degrees	6.6° ± 0.4°	6.0° ± 0.3°	5.8° ± 0.5°	5.3° ± 0.2°	4.8° ± 0.3°
Electrical Downtilt		2-12°				
Impedance		50Ω				
VSWR (Return Loss)		1.5:1 (-14 dB)				
ermodulation	dBc	-153 (3rd Order for 2x20 W Carriers)				
ack Ratio, Total Power, ± 30°	dB	23.8	23.2	23.1	22.9	22.1
Side Lobe Suppression	dB	15.2	16.7	17.2	19.6	16.9
Over Sector	dB	9.7	9.0	8.2	5.7	1.7
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		20.9	23.7	21.4	21.5	19.3
Maximum Effective Power Per Port V		250 W				
Isolation	dB	25				
solation	dB	25				
	Over all Tilts Max Gain eamwidth (3 dB) eamwidth (3 dB) owntilt arn Loss) ermodulation ck Ratio, Total Power, ± 30° Side Lobe Suppression Over Sector Discrimination (XPD) cal Boresight (0°) Effective Power Per Port Isolation	MHz MHz	MHz	MHz	MHz 1710-2690 MHz 1710-1880 1850-1990 1920-2170 1 ±45° Over all Tilts dBi 17.1 ± 0.7 17.1 ± 0.6 17.3 ± 0.6 Max Gain dBi 17.8 17.7 17.9 Namwidth (3 dB) degrees 69.0° ± 8.2° 66.8° ± 5.7° 67.0° ± 5.4° earmwidth (3 dB) degrees 6.6° ± 0.4° 6.0° ± 0.3° 5.8° ± 0.5° owntilt degrees 2-12° Ohms 50Ω urn Loss) 1.5:1 (-14 dB) ermodulation dBc -153 (3rd Order for 2x20 W ck Ratio, Total Power, ± 30° dB 23.8 23.2 23.1 Side Lobe Suppression dB 15.2 16.7 17.2 Over Sector dB 9.7 9.0 8.2 Discrimination (XPD) cal Boresight (0°) dB 20.9 23.7 21.4 effective Power Per Port Watts 250 W	MHz

Specifications follow BASTA guidelines.

TDD 8T8R 2300-2690 MHz (90° Unit Beam)

HYBRID FDD/TDD

2690 mm

SITE SHARING OPTIONAL

FT-BB4LTM26-N0

FT-BB4LTM26-S0

ELECTRICAL SPECIFICATIONS

Y5 Cal. Board and S Parameter

Frequency Range	MHz	2300-2690	
	MHz	2300-2400	2490-2690
Coupling Between Cal. Port to Input Port	dB	-26 ± 2	
Coupling Amplitude Accuracy	dB	≤ 0.9	
Coupling Phase Accuracy	degrees	≤ 9.0°	
VSWR		≤ 1.5	
Maximum Power	Watts	80 W	
ISO Co-Polar	dB	≥ 19	
ISO Cross-Polar	dB	≥ 24	

Specifications follow BASTA guidelines.

ELECTRICAL SPECIFICATIONS

Y5 **Radiation Parameter - Unit Beam**

Frequency F	Range	MHz	2300-	2690		
		MHz	2300-2400	2490-2690		
Polarization			±4	5°		
C	Over all Tilts	dBi	15.5 ± 0.7	15.7 ± 0.7		
Gain	Max Gain	dBi	16.2	16.4		
Azimuth Beamwidth (3 dB)		degrees	97.6° ± 4.0°	91.0° ± 9.3°		
Elevation Beamwidth (3 dB)		degrees	6.0° ± 0.4°	5.3° ± 0.4°		
Electrical Downtilt		degrees	2-12°			
Impedance		Ohms	50Ω			
VSWR			1.5:1			
Front-to-Ba	ck Ratio, Total Power, ± 30°	dB	21.0	20.9		
First Upper Side Lobe Suppression		dB	14.4	13.1		
Cross-Pol Over Sector		dB	12.5	8.5		
Cross Polar Discrimination (XPD) at Mechanical Boresight (0°)		dB	14.3	15.8		

Specifications follow BASTA guidelines.

TDD 8T8R 2300-2690 MHz (90° Unit Beam)

HYBRID FDD/TDD

2690 mm

INTEGRATED RET

SITE SHARING OPTIONAL

FT-BB4LTM26-N0

FT-BB4LTM26-S0

ELECTRICAL SPECIFICATIONS

Y5

Radiation	Parameter -	- Broadcasting	Beam

Frequency Range		MHz	2300-	2690	
		MHz	2300-2400	2490-2690	
Polarization			±45°		
Gain Over all Tilts Max Gain		dBi	16.0 ± 0.4	16.5 ± 0.8	
		dBi	16.4	17.3	
Azimuth Beamwidth (3 dB)		degrees	70.9° ± 2.9°	61.1° ± 5.9°	
Elevation Beamwidth (3 dB)		degrees	6.2° ± 0.3°	5.4° ± 0.3°	
Electrical Dow	ntilt	degrees	2-12°		
Impedance		Ohms	50Ω		
VSWR			1.5:1		
Front-to-Back Ratio, Total Power, ± 30°		dB	22.6	22.5	
First Upper Sid	de Lobe Suppression	dB	15.8	13.4	

Specifications follow BASTA guidelines.

ELECTRICAL SPECIFICATIONS

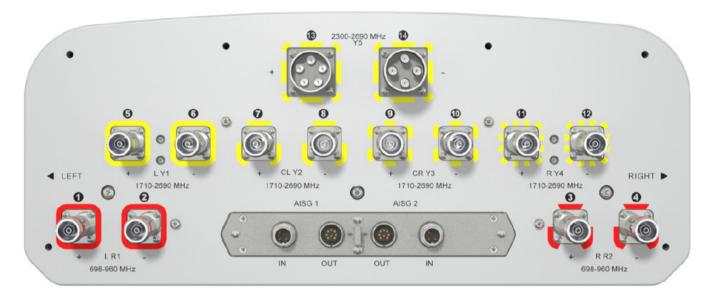
Y5 **Radiation Parameter - Working Beam**

Frequency Range		MHz	2300-2690		
			2300-2400	2490-2690	
Polarization			±45°		
Over all Tilts		dBi	19.9 ± 0.4	20.8 ± 0.6	
Gain	Gain Max Gain		20.3	21.4	
Azimuth Beamwidth (3 dB)		degrees	25.2° ± 1.0°	20.7° ± 1.7°	
Elevation Bean	Elevation Beamwidth (3 dB)		6.0° ± 0.3°	5.3° ± 0.3°	
Electrical Down	ntilt	degrees	2-12°		
Impedance		Ohms	50Ω		
VSWR			1.5:1		
Front-to-Back Ratio, Total Power, ± 30°		dB	28.6	27.4	
First Upper Sic	le Lobe Suppression	dB	14.4	13.1	

Specifications follow BASTA guidelines.

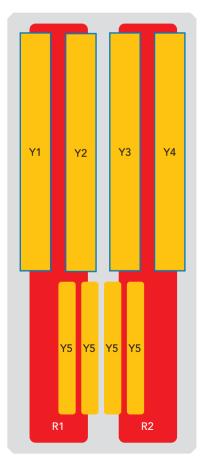
TDD 8T8R 2300-2690 MHz (90° Unit Beam)

HYBRID FDD/TDD 2690 mm


INTEGRATED RET

SITE SHARING OPTIONAL

FT-BB4LTM26-N0


FT-BB4LTM26-S0

BOTTOM VIEW - LABELING

ARRAY LAYOUT

ARRAY	FREQUENCY	CONNECTOR TYPE
■ R1	698-960 MHz	(2x) 4.3-10 Female
■ R2	698-960 MHz	(2x) 4.3-10 Female
■ Y1	1710-2690 MHz	(2x) 4.3-10 Female
■ Y2	1710-2690 MHz	(2x) 4.3-10 Female
■ Y3	1710-2690 MHz	(2x) 4.3-10 Female
■ Y4	1710-2690 MHz	(2x) 4.3-10 Female
	2300-2690 MHz	
NE.	2300-2690 MHz	(2x) Cluster Connectors
■ Y5	2300-2690 MHz	MQ4/MQ5
	2300-2690 MHz	

The illustration is not shown to scale.

TDD 8T8R 2300-2690 MHz (90° Unit Beam)

HYBRID FDD/TDD

2690 mm

INTEGRATED RET

SITE SHARING OPTIONAL

FT-BB4LTM26-N0

FT-BB4LTM26-S0

MECHANICAL SPECIFICATIONS

Length			mm (in)	2690 (105.9)	
Width		mm (in)	499 (19.6)		
Depth			mm (in)	199 (7.8)	
Net Weight	- Antenna Only		kg (lbs)	48.1 (106)	
Net Weight	- Mounting Hard	dware Only	kg (lbs)	4.5 (9.9)	
Wind Load		Front	N (lbf)	903 (203)	
Rated at		Side	N (lbf)	717 (161)	
150 km/h (93 mph)		Rear	N (lbf)	1072 (241)	
Survival Wir	Survival Wind Speed		km/h (mph)	200 (124)	
Connector ⁻	Connector Type			(12x) 4.3-10 Female, (2x) Cluster Connectors MQ4/MQ5, (2x) AISG Connectors (1 Male, 1 Female) at Bottom Site Sharing Support: (4x) AISG Connectors (2 Male, 2 Female) at Bottom	
Radome Co	lor			Light Grey RAL7035	
Radome Material			Fiberglass		
Lightning Protection			DC Ground		
Chii.	Packing Size (Le	ength x Width x Depth)	mm (in)	2940 × 570 × 275 (115.7 × 22.4 × 10.8)	
Shipping	Shipping Weig	nt	kg (lbs)	62.3 (137.3)	
			*	•	

ENVIRONMENTAL SPECIFICATIONS

Environmental Standard		ETS 300 019
Operating Temperature	degrees	-40° to +60° C (-40° to +140° F)
Product Environmental Compliance		Product is RoHS Compliant

TDD 8T8R 2300-2690 MHz (90° Unit Beam)

HYBRID FDD/TDD

2690 mm

INTEGRATED RET

SITE SHARING OPTIONAL

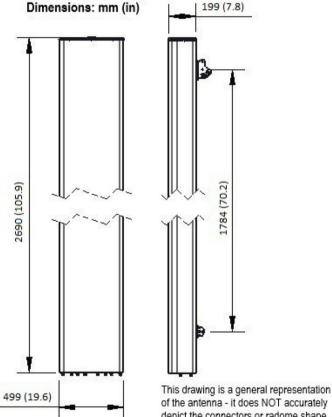
FT-BB4LTM26-N0

FT-BB4LTM26-S0

ACCESSORIES Accessories may be ordered separately unless otherwise indicated.

ITEM	MODEL NUMBER	WEIGHT
Beam Tilt Mounting Bracket Kit for Pole Diameter 60-110 mm (2.4-4.3 in) Shipped with antenna	APM50-B2	4.5 kg (9.9 lbs)

INSTALLATION Please read all installation notes before installing product.



Always attach the antenna using all mounting points.

Do not install antenna with the connectors facing upwards.

EXTERNAL DOCUMENT LINKS

APM50 Mounting Kit Series Installation Instructions

of the antenna - it does NOT accurately depict the connectors or radome shape.

NOTES

Specifications follow BASTA guidelines.

Horizontal dipole column spacing for the 8T8R beamforming is 70 mm (2.8 in)

For additional mounting information, please check External Document Links.

For Radiating Patterns: Request pattern files