

8-Port Antenna 1695-2690 | 1695-2690 | 1695-2690 | 1695-2690 MHz

65° 1391 mm

6177702E

6177702EN 6177702EG 6177702ENG 4-Band, 8-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1391 mm

- Quad band antenna, Dual polarisation, 8 connectors
- Independent tilt on each band 2-12° / 2-12° / 2-12°
- MET and RET versions, 3GPP/AISG2.0, in multiple single RET (multiple device type1) or in Multi-RET (device type 17, with firmware above MD3.10).
- Our patented RET module to control all tilt angles, fully inserted inside the antenna (field replaceable)

		1695-2690	1695-2690	1695-2690	1695-2690		
	Frequency Range (MHz)	1073-2070	1073-2070	1073-2070	1073-2070		
≥	Array	¥1	¥2	Y 3	<mark></mark> Y4		
ERVIE	Connector	1-2	3-4	5-6	7-8		
CT OV	Polarization	XPOL	XPOL	XPOL	XPOL		
PRODUCT OVERVIEW	Azimuth Beamwidth (avg)	65°	65°	65°	65°		
Ē	Electrical Downtilt	2-12°	2-12°	2-12°	2-12°		
	Dimensions	1391 x 432 x 153 mm					

ORDERING OPTIONS Select from the different options listed below

SELECT ELECTRICAL DOWNTILT CONTROL & AISG PROTOCOL	SELECT ACTUATOR	SELECT CONNECTOR TYPE	ANTENNA MODEL NUMBER
		7/16 DIN Female	6177702E
Manual Electrical Tilt (MET)		4.3-10 Female	6177702EN
Remote Electrical Tilt (RET)	Multi-Device Control Unit	7/16 DIN Female	6177702EG
AISG v2.0 / 3GPP	(MDCU)	4.3-10 Female	6177702ENG

*Pre-commissioned configuration; Contact Amphenol for further details.

Y1

65° 1391 mm

6177702E

6177702EN 6177702EG 6177702ENG 4-Band, 8-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1391 mm

ELECTRICAL SPECIFICATIONS Ultra Wide Band

	MHz			1695-2690				
	MHz	1695-1880	1850-1990	1920-2180	2300-2500	2490-2690		
		±45°						
Over all Tilts	dBi	16.8 ± 0.3	16.9 ± 0.3	17.2 ± 0.6	17.6 ± 0.3	18.0 ± 0.3		
ו	degrees	72.6° ± 5.9°	69.4° ± 3.5°	67.9° ± 3.4°	65.8° ± 4.8°	65.6° ± 3.3°		
Elevation Beamwidth		$7.4^{\circ} \pm 0.5^{\circ}$	7.0° ± 0.5°	6.7° ± 0.5°	5.8° ± 0.3°	5.3° ± 0.3°		
Electrical Downtilt		2°-12°						
	Ohms	50						
VSWR		< 1.5						
	dBc	< -153						
, Total Power, ±30°	dB	> 25.6	> 25.1	> 25.4	> 25.2	> 25.0		
pression, Peak to 20°	dB	> 14.8	> 15.1	> 17.3	> 14.2	> 14.7		
Main Direction (0°)	dB	> 16.0	> 15.7	> 16.4	> 17.3	> 16.1		
Sector Edges (60°)	dB	> 8.2	> 6.9	> 7.0	> 5.1	> 7.6		
Maximum Effective Power Per Port		250 W						
Inter Band Isolation		≥ 28						
Intra Band Isolation				≥ 28				
	th ation DW Carriers , Total Power, ±30° ppression, Peak to 20° Main Direction (0°) Sector Edges (60°) Power Per Port	MHz Over all Tilts dBi degrees	MHz 1695-1880 Over all Tilts dBi 16.8 ± 0.3 degrees $72.6^{\circ} \pm 5.9^{\circ}$ degrees $72.6^{\circ} \pm 0.5^{\circ}$ degrees $7.4^{\circ} \pm 0.5^{\circ}$ degrees Ohms Ohms<	MHz 1695-1880 1850-1990 Over all Tilts dBi 16.8 \pm 0.3 16.9 \pm 0.3 Over all Tilts dBi 16.8 \pm 0.3 16.9 \pm 0.3 degrees 72.6° \pm 5.9° 69.4° \pm 3.5° degrees 7.4° \pm 0.5° 7.0° \pm 0.5° degrees 0.4° \pm 0.5° 7.0° \pm 0.5° degrees ation Ohms over all Power, \pm 30° dB > 25.6 > 25.1 pression, Peak to 20° dB > 14.8 > 15.1 Main Direction (0°) dB > 8.2 > 6.9 Power Per Port Watts dB	MHz 1695-2690 MHz 1695-1880 1850-1990 1920-2180 $\pm 45^{\circ}$ Over all Tilts dBi 16.8 \pm 0.3 16.9 \pm 0.3 17.2 \pm 0.6 on degrees 72.6° \pm 5.9° 69.4° \pm 3.5° 67.9° \pm 3.4° dh degrees 7.4° \pm 0.5° 7.0° \pm 0.5° 6.7° \pm 0.5° degrees 7.4° \pm 0.5° 7.0° \pm 0.5° 6.7° \pm 0.5° degrees 7.4° \pm 0.5° 7.0° \pm 0.5° 6.7° \pm 0.5° degrees 7.4° \pm 0.5° 7.0° \pm 0.5° 6.7° \pm 0.5° degrees 2°-12° 2°-12° Ohms 50 ation dBc < opperssion, Peak to 20° dB > 25.6 > 25.1 > 25.4 opperssion, Peak to 20° dB > 16.0 > 15.7 > 16.4 Sector Edges (60°) dB > 8.2 > 6.9 > 7.0 Power Per Port Watts 250 W 250 W	MHz 1695-2690 MHz 1695-1880 1850-1990 1920-2180 2300-2500 ±45° ±45° Over all Tilts dBi 16.8 ± 0.3 16.9 ± 0.3 17.2 ± 0.6 17.6 ± 0.3 Over all Tilts dBi 16.8 ± 0.3 16.9 ± 0.3 67.9° ± 3.4° 65.8° ± 4.8° degrees 72.6° ± 5.9° 69.4° ± 3.5° 67.9° ± 3.4° 65.8° ± 4.8° degrees 7.4° ± 0.5° 7.0° ± 0.5° 6.7° ± 0.5° 5.8° ± 0.3° degrees 7.4° ± 0.5° 7.0° ± 0.5° 6.7° ± 0.5° 5.8° ± 0.3° degrees 7.4° ± 0.5° 7.0° ± 0.5° 6.7° ± 0.5° 5.8° ± 0.3° degrees 7.4° ± 0.5° 7.0° ± 0.5° 6.7° ± 0.5° 5.8° ± 0.3° degrees 7.4° ± 0.5° 7.0° ± 0.5° 6.7° ± 0.5° 5.8° ± 0.3° degrees 7.4° ± 0.5° 7.0° ± 0.5° 5.0° 5.0° VCarriers dBc > 25.6 > 25.1 > 25.4 > 25.2 opression, Peak to 20° dB<		

Standard values based on NGMN-P-BASTA version 10.0 recommendation.

Frequency Range		MHz	1695-2690						
		MHz	1695-1880	1850-1990	1920-2180	2300-2500	2490-2690		
Polarization				I	±45°		1		
Gain	Over all Tilts	dBi	16.8 ± 0.3	17.0 ± 0.5	17.3 ± 0.4	17.8 ± 0.5	18.0 ± 0.5		
Azimuth Beamwidth		degrees	69.7° ± 8.7°	$63.6^{\circ} \pm 4.6^{\circ}$	64.0° ± 4.0°	61.5° ± 3.0°	60.9° ± 2.8°		
Elevation Beamwidth		degrees	$7.4^{\circ} \pm 0.4^{\circ}$	7.1° ± 0.4°	6.6° ± 0.5°	5.7° ± 0.3°	5.3° ± 0.3°		
Electrical Downtilt		degrees	2°-12°						
Impedance		Ohms	50						
VSWR			< 1.5						
Passive Intermodulation 3rd Order for 2 x 20W Carriers		dBc	< -153						
Front-to-Back Ratio	, Total Power, ±30°	dB	> 24.0	> 24.6	> 24.4	> 26.8	> 28.8		
Jpper Sidelobe Sup	pression, Peak to 20°	dB	> 14.3	> 13.5	> 15.2	> 13.6	> 13.7		
	Main Direction (0°)	dB	> 14.4	> 13.5	> 14.0	> 13.7	> 13.9		
Cross Polar Ratio	Sector Edges (60°)	dB	> 8.3	> 8.9	> 7.9	> 5.6	> 4.6		
Maximum Effective Power Per Port Wa		Watts	250 W						
Inter Band Isolation		dB			≥ 28				
Intra Band Isolation		dB			≥ 28				

Standard values based on NGMN-P-BASTA version 10.0 recommendation.

Y3

65° 1391 mm

6177702E

6177702EN 6177702EG 6177702ENG 4-Band, 8-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1391 mm

ELECTRICAL SPECIFICATIONS Ultra Wide Band

		That Bana							
Frequency Range		MHz			1695-2690				
		MHz	1695-1880	1850-1990	1920-2180	2300-2500	2490-2690		
Polarization			±45°						
Gain	Over all Tilts	dBi	16.1 ± 0.5	16.3 ± 0.5	16.6 ± 0.5	17.6 ± 0.5	18.1 ± 0.5		
Azimuth Beamwidth		degrees	73.8° ± 5.4°	67.6° ± 5.0°	64.1° ± 4.9°	61.7° ± 4.0°	60.3° ± 2.6°		
Elevation Beamwidth		degrees	7.3° ± 0.4°	7.0° ± 0.5°	6.7° ± 0.6°	5.7° ± 0.2°	5.4° ± 0.2°		
Electrical Downtilt		degrees	2°-12°						
mpedance		Ohms	50						
VSWR			< 1.5						
Passive Intermodulation 3rd Order for 2 x 20W Carriers		dBc	< -153						
Front-to-Back Ratio	, Total Power, ±30°	dB	> 24.1	> 26.4	> 27.1	> 26.0	> 29.8		
Upper Sidelobe Sup	pression, Peak to 20°	dB	> 13.1	> 12.9	> 13.4	> 13.9	> 15.5		
	Main Direction (0°)	dB	> 16.6	> 15.8	> 15.9	> 14.7	> 14.9		
Cross Polar Ratio	Sector Edges (60°)	dB	> 6.9	> 6.5	> 6.0	> 6.4	> 5.6		
Maximum Effective Power Per Port Watt		Watts	250 W						
Inter Band Isolation		dB	≥ 28						
Intra Band Isolation		dB			≥ 28				

Standard values based on NGMN-P-BASTA version 10.0 recommendation.

Frequency Range		MHz	1695-2690						
		MHz	1695-1880	1850-1990	1920-2180	2300-2500	2490-2690		
Polarization				1	±45°		1		
Gain	Over all Tilts	dBi	16.7 ± 0.3	16.9 ± 0.3	17.2 ± 0.4	17.4 ± 0.5	18.0 ± 0.5		
Azimuth Beamwidth		degrees	76.0° ± 4.7°	$71.4^{\circ} \pm 4.6^{\circ}$	69.2° ± 5.0°	64.8° ± 5.7°	64.0° ± 4.2°		
Elevation Beamwidth		degrees	$7.5^{\circ} \pm 0.4^{\circ}$	7.1° ± 0.4°	6.5° ± 0.6°	5.7° ± 0.3°	5.3° ± 0.3°		
Electrical Downtilt		degrees	2°-12°						
Impedance		Ohms	50						
VSWR			< 1.5						
Passive Intermodulation 3rd Order for 2 x 20W Carriers		dBc	< -153						
Front-to-Back Ratic	, Total Power, ±30°	dB	> 26.4	> 25.8	> 24.4	> 25.7	> 27.2		
Upper Sidelobe Su	opression, Peak to 20°	dB	> 13.6	> 13.7	> 13.5	> 13.4	> 13.4		
	Main Direction (0°)	dB	> 15.8	> 16.2	> 17.1	> 15.6	> 17.8		
Cross Polar Ratio	Sector Edges (60°)	dB	> 6.0	> 6.1	> 7.3	> 5.2	> 7.9		
Maximum Effective Power Per Port W		Watts	250 W						
Inter Band Isolation		dB			≥ 28				
Intra Band Isolation		dB			≥ 28				

Standard values based on NGMN-P-BASTA version 10.0 recommendation.

65° 1391 mm

6177702E

6177702EN 6177702EG 6177702ENG 4-Band, 8-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1391 mm

ELECTRICAL DOWNTILT CONTROL

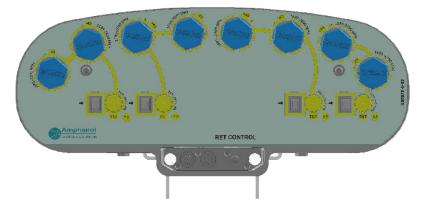
For multiband antennas, electrical downtilt for each band can be controlled separately.					
Manual Electrical Tilt (MET) Control	A colored knob at the end of the tilt indicator allows change of the tilt without need of a tool. The knob color is identical to the corresponding connector color. The manual tilt 'override' function is always available with no need to remove the physical RET motor.				
Remote Electrical Tilt (RET) Control	The remote control of the electrical tilt is managed by a Multi-Device Control Unit (MDCU) or a Multi-Device Dual Unit (MDDU) inserted in the bottom of the antenna. See details below and refer to the ordering options to see which actuators are available with this particular antenna. A single actuator individually controls the tilt of each band (no need for daisy chain cables between the bands). This module does not add any additional length to the antenna.				

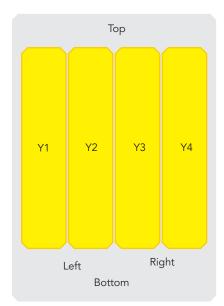
RET ACTUATOR

Amphenol's **RET-READY** antennas are delivered with the RET Actuator already installed and pre-commissioned with all antenna parameters. Every RET device is factory configured and calibrated so the antenna is ready to be used once delivered to the site which means that there is no need for further installation of RET devices or for programming their configuration or for running a calibration process.

RET-READY ACTUATORS Multi-Device Control Unit (MDCU). The MDCU is an electronic module that allows the remote control of the electrical downtilt (RET) in Amphenol antennas with factory embedded motors. The MDCU is factory installed. Refer to the ORDERING OPTIONS for availability with this model.

Multi-Device Dual Unit (MDDU). The MDDU allows two separate RET Controllers to independently drive the RETs in antennas with factory embedded motors (for antenna sharing or two technologies). The MDDU is factory installed. Refer to the ORDERING OPTIONS for availability with this model.


Number of RET-READ	Y Actuators	One per antenna			
Input Voltage		+10 to +30 V			
Power Consumption	Idle State (AISG P1)	0.5 W			
	High Power Mode (AISG P2)	3 W			
Protocol		3GPP/AISG 2.0			
Tilt Change Duration		Less than 15 seconds, typical (may vary dependent on antenna type and outdoor temperature)			
Precision		±0.5°			
Tilt Change Capability	,	50,000 minimum			
	MDCU	One pair of AISG Male and Female (type IEC60130-9)			
RET Interface	MDDU	Two male AISG 8 pin connectors (type IEC60130-9 Ed 3.0)			
Field Replaceable Uni	t	Yes			



65° 1391 mm

6177702E

6177702EN 6177702EG 6177702ENG 4-Band, 8-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1391 mm

	ARRAY	FREQUENCY	CONNECTOR	CONNECTOR TYPE
AYOUT	<mark>_</mark> Y1	1695-2690	1-2	7/16 DIN Female or 4.3-10 Female Long Neck
]	<mark>_</mark> Y2	1695-2690	3-4	7/16 DIN Female or 4.3-10 Female Long Neck
ARRAY	<mark>_</mark> Y3	1695-2690	5-6	7/16 DIN Female or 4.3-10 Female Long Neck
	<mark>_</mark> Y4	1695-2690	7-8	7/16 DIN Female or 4.3-10 Female Long Neck

Diagram shown at right depicts the view from the front of the antenna. The illustration is not shown to scale.

MECHANICAL SPECIFICATIONS

Lengt	า		mm (in)	1391 (54.8)
Width			mm (in)	432 (17.0)
Depth	Depth		mm (in)	153 (6.0)
Net Weight - Antenna Only		kg (lbs)	24 (52.9)	
Mechanical Distance Between Mounting Points			mm (in)	Refer to Diagram
Windl		Calculation	km/h (mph)	150 (93.2)
	991-1-4:2005 using Tunnel Coefficients)	Frontal	N (lbf)	418.5 (94.1)
	· · · · · · · · · · · · · · · · · · ·	Lateral	N (lbf)	249.7 (56.1)
		Rearside	N (lbf)	497.2 (111.8)
Opera	tional Wind Speed		km/h (mph)	160 (99.4)
Surviv	al Wind Speed		km/h (mph)	200 (124)
Rador	ne Color			Gray RAL7035
Rador	ne Material			FRP
Lightning Protection			Direct Ground	
b	Shipping Dimension	s (Length x Width x Depth)	mm (in)	1664 x 559 x 307 (65.5 x 22.0 x 12.1)
Shipping	Shipping Weight		kg (lbs)	35 (77.1)
Sh	Shipping Volume		m ³ (ft ³)	0.285 (10.1)
			1	

Quoted performance parameters are provided to offer typical, peak or range values only and may vary as a result of normal testing, manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to products may be made without notice.

CONNECTING PEOPLE + TECHNOLOGY

65° 1391 mm

6177702E

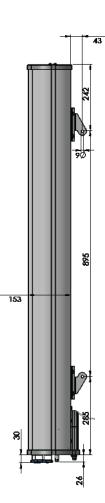
6177702EN 6177702EG 6177702ENG 4-Band, 8-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1391 mm

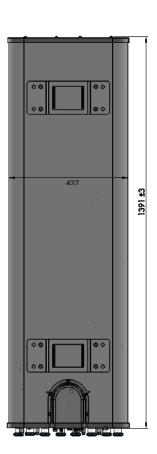
ENVIRONMENTAL SPECIFICATIONS

Environmental Standard		ETS 300 019
Operating Temperature	° C (° F)	-40° to +60° (-40° to 140°)
Product Environmental Compliance		Product is RoHs Compliant

ACCESSORIES All accessories are ordered separately unless otherwise indicated

ITEM	MODEL NUMBER	WEIGHT
Brackets for pole Ø48 to Ø115 mm (Ø1.9 to Ø4.5 in) delivered as standard	IA00181	3.4 kg (7.5 lbs)
Kit to add mechanical tilt (0° to 10°) to above brackets optional	0900397/00	3.0 kg (6.6 lbs)


Wall mounting brackets are available upon request


INSTALLATION Please read all installation notes before installing this product.

Always attach the antenna by all mounting points.

Do not install the antenna with the connectors facing upwards.

