

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

- Deca band antenna, dual polarisation, 20 connectors
- Integra compatible ability to upgrade and recycle, saving 50% carbon emission
- Independent tilt on each band 2-12° / 2-12° / 2-12° / 2-12° / 2-12° / 2-12° / 2-12° / 2-12° / 2-12° / 2-12°
- MET and RET versions, 3GPP/AISG2.0, in multiple single RET (multiple device type1) or in Multi-RET (device type 17, with firmware above MD3.10).
- Our patented, RET module controlling all tilt angles, fully inserted inside the antenna (field replaceable).
- 5G optimal integration with optional mMIMO & 8T8R Hybrid Kits (compatibility list available on request).

>	Frequency Range (MHz)	698-960	698-960	1427-2180	1427-2180	2300-2690	1427-2690	1427-2690	1427-2690	2300-2690	1427-2690
	Array	■ R1	■ R2	■ B1	■ B2	Y1	Y2	□ Y3	<u> </u>	<u>Y</u> 5	<u>□</u> Y6
OVERVIEW	Connector	1-2	3-4	5-6	7-8	9-10	11-12	13-14	15-16	17-18	19-20
	Polarization	XPOL	XPOL	XPOL	XPOL	XPOL	XPOL	XPOL	XPOL	XPOL	XPOL
PRODUCT	Azimuth Beamwidth (avg)	65°	65°	65°	65°	65°	65°	65°	65°	65°	65°
Ā	Electrical Downtilt	2-12°	2-12°	2-12°	2-12°	2-12°	2-12°	2-12°	2-12°	2-12°	2-12°
	Dimensions				2697 x 472	x 205 mm					

SELECT ELECTRICAL DOWNTILT CONTROL & AISG PROTOCOL	SELECT ACTUATOR	SELECT CONNECTOR TYPE	ANTENNA MODEL NUMBER
Manual Electrical Tilt (MET)		4.3-10 Female	5780700
Remote Electrical Tilt (RET) AISG v2.0 / 3GPP	Multi-Device Control Unit (MDCU)	4.3-10 Female	5780700G
	Multi-Device Dual Unit (MDDU)	4.3-10 Female	5780700Dx*

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

ELECTRICAL SPECIFICATIONS Ult	ra Low Band		■ R1		
Frequency Range	MHz		698-960		
	MHz	698-806	790-862	880-960	
Polarization			±45°	<u>'</u>	
Gain, Over all Tilts	dBi	15.5 ± 0.5	16.0 ± 0.5	16.5 ± 0.5	
Azimuth Beamwidth	degrees	75° ± 5°	69° ± 5°	60° ± 5°	
Elevation Beamwidth	degrees	8.5° ± 0.5°	7.5° ± 0.5°	7.0° ± 0.5°	
Electrical Downtilt	degrees	2°-12°			
Impedance	Ohms	50			
VSWR (Return Loss)	(dB)		< 1.5 (> 14)		
Passive Intermodulation 3rd Order for 2 x 20W Carriers	dBc		< -153		
Front-to-Back Ratio, Total Power, ±30°	dB	> 25	> 23	> 25	
Upper Sidelobe Suppression, Peak to 20°	dB	> 15	> 15	> 15	
Cross Polar Discrimination (XPD) Sector Edges (±60°)	dB	> 9	> 8	> 7	
Maximum Effective Power Per Port	Watts	250 W			
Inter/Intra Cluster Isolation	dB		> 25		

All parameters are compliant with BASTA revision V11.1

ELECTRICAL SPECIFICATIONS Ulti	ra Low Band		■ R2			
Frequency Range	MHz	698-960				
	MHz	698-806	790-862	880-960		
Polarization			±45°			
Gain, Over all Tilts	dBi	15.5 ± 0.5	16.0 ± 0.5	16.5 ± 0.5		
Azimuth Beamwidth	degrees	75° ± 5°	69° ± 5°	60° ± 5°		
Elevation Beamwidth	degrees	8.5° ± 0.5°	7.5° ± 0.5°	7.0° ± 0.5°		
Electrical Downtilt	degrees	2°-12°				
Impedance	Ohms	50				
VSWR (Return Loss)	(dB)		< 1.5 (> 14)			
Passive Intermodulation 3rd Order for 2 x 20W Carriers	dBc		< -153			
Front-to-Back Ratio, Total Power, ±30°	dB	> 25	> 23	> 25		
Upper Sidelobe Suppression, Peak to 20°	dB	> 15	> 15	> 15		
Cross Polar Discrimination (XPD) Sector Edges (±60°)	dB	> 9	> 8	> 7		
Maximum Effective Power Per Port	Watts	250 W				
Inter/Intra Cluster Isolation	dB		> 25			

All parameters are compliant with BASTA revision V11.1

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

ELECTRICAL SPECIFICATIONS MEGA Wide Band

■ B1

Frequency Range	MHz		1427-2180		
	MHz	1427-1518	1695-1880	1920-2180	
Polarization			±45°	'	
Gain, Over all Tilts	dBi	15.5 ± 0.5	15.5 \pm 0.5 16.0 \pm 0.5 16.5		
Azimuth Beamwidth	degrees	70° ± 5°	69° ± 5°	66° ± 5°	
Elevation Beamwidth	degrees	9° ± 0.5°	7° ± 0.5°	6° ± 0.5°	
Electrical Downtilt	degrees	2°-12°			
Impedance	Ohms	50			
VSWR (Return Loss)	(dB)	< 1.5 (> 14)			
Passive Intermodulation 3rd Order for 2 x 20W Carriers	dBc		< -153		
Front-to-Back Ratio, Total Power, ±30°	dB	> 25	> 27	> 26	
Upper Sidelobe Suppression, Peak to 20°	dB	> 15	> 15	> 15	
Cross Polar Discrimination (XPD) Sector Edges (±60°)	dB	> 7.5	> 7	> 8	
Maximum Effective Power Per Port	Watts		200 W		
Inter/Intra Cluster Isolation	dB		> 25		

ELECTRICAL SPECIFICATIONS MEGA Wide Band

B2

Frequency Range	MHz		1427-2180		
	MHz	1427-1518	1695-1880	1920-2180	
Polarization			±45°	<u> </u>	
Gain, Over all Tilts	dBi	15.5 ± 0.5	16.0 ± 0.5	16.5 ± 0.5	
Azimuth Beamwidth	degrees	70° ± 5°	69° ± 5°	66° ± 5°	
Elevation Beamwidth	degrees	9° ± 0.5°	7° ± 0.5°	6° ± 0.5°	
Electrical Downtilt	degrees	2°-12°			
mpedance	Ohms	50			
VSWR (Return Loss)	(dB)	< 1.5 (> 14)			
Passive Intermodulation Brd Order for 2 x 20W Carriers	dBc	< -153			
Front-to-Back Ratio, Total Power, ±30°	dB	> 25	> 27	> 26	
Upper Sidelobe Suppression, Peak to 20°	dB	> 15	> 15	> 15	
Cross Polar Discrimination (XPD) Sector Edges (±60°)	dB	> 7.5	> 7	> 8	
Maximum Effective Power Per Port	Watts	200 W			
Inter/Intra Cluster Isolation	dB		> 25		

Y2

200 W

> 25

Integra compatible

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

Frequency Range	MHz	230	2300-2690		
	MHz	2300-2400	2490-2690		
Polarization		=	±45°		
Gain, Over all Tilts	dBi	16 ± 0.5	16.5 ± 0.5		
Azimuth Beamwidth	degrees	65° ± 5°	60° ± 5°		
Elevation Beamwidth	degrees	5.5° ± 0.5°	5° ± 0.5°		
Electrical Downtilt	degrees	2	2°-12°		
Impedance	Ohms	50			
VSWR (Return Loss)	(dB)	< 1.	5 (> 14)		
Passive Intermodulation 3rd Order for 2 x 20W Carriers	dBc	<	:-153		
Front-to-Back Ratio, Total Power, ±30°	dB	> 23	> 24		
Upper Sidelobe Suppression, Peak to 20°	dB	> 15	> 15		
Cross Polar Discrimination (XPD) Sector Edges (±60°)	dB	> 5	> 6		
Maximum Effective Power Per Port	Watts	21	00 W		
Inter/Intra Cluster Isolation	dB		> 25		

Frequency Range		MHz			1427-2690			
		MHz	1427-1518	1695-1880	1920-2180	2300-2400	2490-2690	
Polarization					±45°			
Gain	Over all Tilts	dBi	15.5 ± 0.5	16.5 ± 0.5	17 ± 0.5	16.5 ± 0.5	16.5 ± 0.5	
Azimuth Beamwidth		degrees	70° ± 5°	68° ± 5°	66° ± 3°	64° ± 5°	62° ± 5°	
Elevation Beamwidth		degrees	8.5° ± 0.3°	7° ± 0.3°	6° ± 0.3°	5.5° ± 0.3°	5.0° ± 0.3°	
Electrical Downtilt		degrees	2°-12°					
Impedance Ohr			50					
/SWR (Return	rn Loss)	(dB)	< 1.5 (> 14)					
Passive Interr Brd Order for	rmodulation or 2 x 20W Carriers	dBc			< -153			
ront-to-Back	k Ratio, Total Power, ±30°	dB	> 24	> 26	> 28	> 26	> 25	
Upper Sidelobe Suppression, Peak to 20°		dB	> 15	> 15	> 15	> 15	> 15	
Cross Polar D Sector Edges	Discrimination (XPD) s (±60°)	dB	> 10	> 8	> 8	> 7	> 7	
20° Cross Polar D	Discrimination (XPD)		-		-			

Quoted performance parameters are provided to offer typical, peak or range values only and may vary as a result of normal testing, manufacturing and operational conditions. Extreme operational conditions and/or stress on structural supports is beyond our control. Such conditions may result in damage to this product. Improvements to products may be made without notice.

Maximum Effective Power Per Port

Inter/Intra Cluster Isolation

Watts

dB

ELECTRICAL SPECIFICATIONS MEGA Wide

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

MHz 1427-1518 1695-1880 1920-2180 2300-2400 Polarization ±45°							
Polarization ±45°	2490-269						
Gain Over all Tilts dBi 15.6 ± 0.5 17.1 ± 0.5 17.4 ± 0.5 16.9 ± 0.5	17.4 ± 0.5						
Azimuth Beamwidth degrees $71.4^{\circ} \pm 5^{\circ}$ $61.4^{\circ} \pm 5^{\circ}$ $60.2^{\circ} \pm 3^{\circ}$ $63.5^{\circ} \pm 5^{\circ}$	64.3° ± 5						
Elevation Beamwidth degrees $7.1^{\circ} \pm 0.3^{\circ}$ $6.0^{\circ} \pm 0.3^{\circ}$ $5.3^{\circ} \pm 0.3^{\circ}$ $4.8^{\circ} \pm 0.3^{\circ}$	4.2° ± 0.3						
Electrical Downtilt degrees 2°-12°	2°-12°						
mpedance Ohms 50	50						
/SWR (Return Loss) (dB) < 1.5 (> 14)							
Passive Intermodulation 3rd Order for 2 x 20W Carriers dBc <-153							
Front-to-Back Ratio, Total Power, ±30° dB > 28 > 27 > 28 > 28	> 28						
Jpper Sidelobe Suppression, Peak to dB > 15 > 15 > 15	> 15						
Cross Polar Discrimination (XPD) dB > 10 > 8 > 7 Sector Edges (±60°)	> 7						
Maximum Effective Power Per Port Watts 200 W	200 W						
nter/Intra Cluster Isolation dB > 25							
Band							
Band	2490-269						
MHz 1427-2690 MHz 1427-1518 1695-1880 1920-2180 2300-2400	2490-2690						
Polarization MHz MHz 1427-2690 MHz 1427-1518 1695-1880 1920-2180 2300-2400 ±45°	2490-2690 17.4 ± 0.8						
MHz							
MHz	17.4 ± 0.5						
Frequency Range MHz 1427-2690 $\frac{\text{MHz}}{\text{MHz}}$ 1427-1518 1695-1880 1920-2180 2300-2400 $\frac{\text{Polarization}}{\text{Polarization}}$ 36 $\frac{\text{Log}}{\text{Log}}$ 37 $\frac{\text{Log}}{\text{Log}}$ 38 $\frac{\text{Log}}{\text{Log}}$ 39 $\frac{\text{Log}}{\text{Log}}$ 30 $\frac{\text{Log}}{\text{Log}}$ 31 $\frac{\text{Log}}{\text{Log}}$ 32 $\frac{\text{Log}}{\text{Log}}$ 31 $\frac{\text{Log}}{\text{Log}}$ 32 $\frac{\text{Log}}{\text{Log}}$ 32 $\frac{\text{Log}}{\text{Log}}$ 32 $\frac{\text{Log}}{\text{Log}}$ 33 $\frac{\text{Log}}{\text{Log}}$ 36 $\frac{\text{Log}}{\text{Log}}$ 37 $\frac{\text{Log}}{\text{Log}}$ 39 $\frac{\text{Log}}{\text{Log}}$ 30 $\frac{\text{Log}}{\text{Log}}$ 40 $\text{$	17.4 ± 0.5 64.3° ± 5						
Frequency Range MHz 1427-2690 MHz 1427-1518 1695-1880 1920-2180 2300-2400 Polarization $\pm 45^{\circ}$ Gain Over all Tilts dBi 15.6 \pm 0.5 17.1 \pm 0.5 17.4 \pm 0.5 16.9 \pm 0.5 Azimuth Beamwidth degrees 71.4° \pm 5° 61.4° \pm 5° 60.2° \pm 3° 63.5° \pm 5° Elevation Beamwidth degrees 7.1° \pm 0.3° 6.0° \pm 0.3° 5.3° \pm 0.3° 4.8° \pm 0.3° Electrical Downtilt degrees 2°-12°	17.4 ± 0.5 64.3° ± 5						
Frequency Range $\frac{\text{MHz}}{\text{MHz}} = \frac{1427-2690}{\text{MHz}} = \frac{1427-2690}{\text{MHz}} = \frac{1427-1518}{1695-1880} = \frac{1920-2180}{2300-2400} = \frac{2300-2400}{2300-2400} = \frac{2300-2400}$	17.4 ± 0.5 64.3° ± 5						
Frequency Range $\begin{array}{ c c c c c c c c c c c c c c c c c c c$	17.4 ± 0.5 64.3° ± 5						
MHz	17.4 ± 0.5 64.3° ± 5						
MHz	17.4 ± 0.9 $64.3^{\circ} \pm 5$ $4.2^{\circ} \pm 0.3$						
MHz	17.4 ± 0.8 $64.3^{\circ} \pm 5$ $4.2^{\circ} \pm 0.3$ > 28						
MHz	17.4 ± 0.3 $64.3^{\circ} \pm 5$ $4.2^{\circ} \pm 0.3$ > 28 > 15						

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

ELECTRICAL SPECIFICATIONS MEGA Wide

Frequency Range	MHz	2300-	-2690		
	MHz	2300-2400	2490-2690		
Polarization		±4	5°		
Gain, Over all Tilts	dBi	16 ± 0.5	16.5 ± 0.5		
Azimuth Beamwidth	degrees	65° ± 5°	60° ± 5°		
Elevation Beamwidth	degrees	5.5° ± 0.5°	5.0° ± 0.5°		
Electrical Downtilt	degrees	2°-12°			
Impedance	Ohms	50			
VSWR (Return Loss)	(dB)	< 1.5 (> 14)			
Passive Intermodulation 3rd Order for 2 x 20W Carriers	dBc	<-	153		
Front-to-Back Ratio, Total Power, ±30°	dB	> 23	> 24		
Upper Sidelobe Suppression, Peak to 20°	dB	> 15	> 15		
Cross Polar Discrimination (XPD) Sector Edges (±60°)	dB	> 5	> 6		
Maximum Effective Power Per Port	Watts	200) W		
Inter/Intra Cluster Isolation	dB	>	25		

ELECTRICAL SPECIFICATIONS MEGA Wide Band

Frequency Range		MHz			1427-2690				
		MHz	1427-1518	1695-1880	1920-2180	2300-2400	2490-2690		
Polarization				±45°					
Gain	Over all Tilts	dBi	15.5 ± 0.5	16.5 ± 0.5	17 ± 0.5	16.5 ± 0.5	16.5 ± 0.5		
Azimuth Bea	nmwidth	degrees	70° ± 5°	68° ± 5°	66° ± 3°	64° ± 5°	62° ± 5°		
Elevation Beamwidth		degrees	8.5° ± 0.3°	7° ± 0.3°	6° ± 0.3°	5.5° ± 0.3°	5.0° ± 0.3°		
Electrical Do	owntilt	degrees	2°-12°						
Impedance		Ohms	50						
VSWR (Retur	rn Loss)	(dB)	< 1.5 (> 14)						
Passive Inter 3rd Order fo	modulation or 2 x 20W Carriers	dBc	< -153						
Front-to-Bac	k Ratio, Total Power, ±30°	dB	> 24	> 26	> 28	> 26	> 25		
Upper Sidelo 20°	obe Suppression, Peak to	dB	> 15	> 15	> 15	> 15	> 15		
Cross Polar Discrimination (XPD) Sector Edges (±60°)		dB	> 10	> 8	> 8	> 7	> 7		
Maximum Effective Power Per Port Watts			200 W						
Inter/Intra Cluster Isolation		dB		> 25					

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

ELECTRICAL DOWNTILT CONTROL

For multiband antennas, electrical downtilt for each band can be controlled separately.				
Manual Electrical Tilt (MET) Control	A colored knob at the end of the tilt indicator allows change of the tilt without need of a tool. The knob color is identical to the corresponding connector color. The manual tilt 'override' function is always available with no need to remove the physical RET motor.			
Remote Electrical Tilt (RET) Control	The remote control of the electrical tilt is managed by a Multi-Device Control Unit (MDCU) or a Multi-Device Dual Unit (MDDU) inserted in the bottom of the antenna. See details below and refer to the ordering options to see which actuators are available with this particular antenna. A single actuator individually controls the tilt of each band (no need for daisy chain cables between the bands). This module does not add any additional length to the antenna.			

RET ACTUATOR

Amphenol's **RET-READY** antennas are delivered with the RET Actuator already installed and pre-commissioned with all antenna parameters. Every RET device is factory configured and calibrated so the antenna is ready to be used once delivered to the site which means that there is no need for further installation of RET devices or for programming their configuration or for running a calibration process.

RET-READY ACTUATORS Multi-Device Control Unit (MDCU). The MDCU is an electronic module that allows the remote control of the electrical downtilt (RET) in Amphenol antennas with factory embedded motors. The MDCU is factory installed. Refer to the ORDERING OPTIONS for availability with this model.

Multi-Device Dual Unit (MDDU). The MDDU allows two separate RET Controllers to independently drive the RETs in antennas with factory embedded motors (for antenna sharing or two technologies). The MDDU is factory installed. Refer to the ORDERING OPTIONS for availability with this model.

Number of RET-READY Actuators		One per antenna			
Input Voltage		+10 to +30 V			
Power Consumption Idle State (AISG P1)		0.5 W			
	High Power Mode (AISG P2)	3 W			
Protocol		3GPP/AISG 2.0			
Tilt Change Duration		Less than 15 seconds, typical (may vary dependent on antenna type and outdoor temperature)			
Precision		±0.5°			
Tilt Change Capability		50,000 minimum			
DET L. (MDCU	One pair of AISG Male and Female (type IEC60130-9)			
RET Interface	MDDU	Two male AISG 8 pin connectors (type IEC60130-9 Ed 3.0)			
Field Replaceable Unit		Yes			

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

		T		I
	ARRAY	FREQUENCY	CONNECTOR	CONNECTOR TYPE
ARRAY LAYOUT	■ R1	698-960	1-2	4.3-10 Female
	R 2	698-960	3-4	4.3-10 Female
	■ B1	1427-2180	5-6	4.3-10 Female
	■ B2	1427-2180	7-8	4.3-10 Female
	Y1	2300-2690	9-10	4.3-10 Female
	Y2	1427-2690	11-12	4.3-10 Female
	Y3	1427-2690	13-14	4.3-10 Female
	<u> </u>	1427-2690	15-16	4.3-10 Female
	Y5	2300-2690	17-18	4.3-10 Female
	<u> </u>	1427-2690	19-20	4.3-10 Female

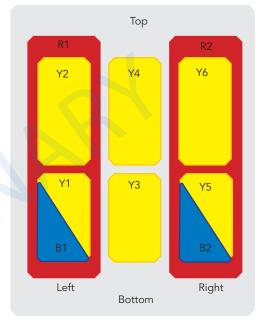


Diagram shown above depicts the view from the front of the antenna.

The illustration is not shown to scale.

MECHANICAL SPECIFICATIONS

Length		mm (in)	2697 (106.1)		
Width		mm (in)	472 (18.6)		
Depth		mm (in)	205 (8.0)		
Net Weight - Antenna Only		kg (lbs)	67.0 (147.7)		
Mecha	Mechanical Distance Between Mounting Points		mm (in)	Refer to Diagram	
Windle		Calculation	km/h (mph)	150 (93.2)	
	991-1-4:2005 using Tunnel Coefficients)	Frontal	N (lbf)	989 (222.3)	
	•	Lateral	N (lbf)	628 (141.2)	
		Rearside	N (lbf)	998 (224.4)	
		Maximum	N (lbf)	1830 (411.4)	
Survival Wind Speed		km/h (mph)	200 (124)		
Radon	Radome Color			Gray RAL7035	
Radon	Radome Material			Outdoor Fiberglass	
Lightning Protection			Direct Ground		
g _L	Shipping Dimensions (Length x Width x Depth)		mm (in)	2940 x 540 x 370 (115.7 x 21.2 x 14.5)	
Shipping	Shipping Weight		kg (lbs)	78.0 (172.0)	
S	Shipping Volume		m³ (ft³)	0.587 (20.7)	

5G Ready

65°

2697 mm

5780700

5780700G 5780700Dx

Deca Band, 20-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 2697 mm

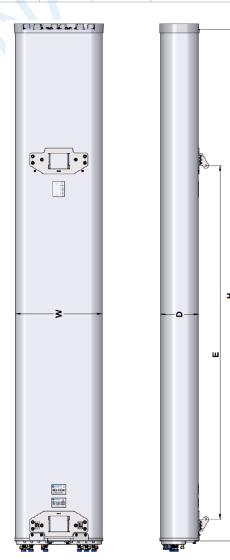
ENVIRONMENTAL SPECIFICATIONS

Environmental Standard		ETS 300 019		
Operating Temperature	° C (° F)	-40° to +60° (-40° to 140°)		
Product Environmental Compliance		Product is RoHs Compliant		

ACCESSORIES All accessories are ordered separately unless otherwise indicated

ITEM	MODEL NUMBER	WEIGHT
Brackets for pole Ø48 to Ø115 mm (Ø1.9 to Ø4.5 in) <i>delivered as standard</i>	O8464	3.4 kg (7.5 lbs)
Brackets for pole Ø70 to Ø150 mm (Ø2.8-Ø5.9 in) <i>optional</i>	O8465	3.9 kg (8.6 lbs)
Kit to add mechanical tilt (0° to 10°) to above brackets <i>optional</i>	0900396/00	2.3 kg (5.1 lbs)

INSTALLATION Please read all installation notes before installing this product.



Always attach the antenna by all mounting points.

Do not install the antenna with the connectors facing upwards.

MAIN DIMENSIONS

Length	Н	mm (in)	2697 (106.1)
Width	W	mm (in)	472 (18.6)
Depth	D	mm (in)	205 (8.0)
Distance between mounting points	Е	mm (in)	1865 (73.5)

