

# 698-803 | 880-960 | 698-960 | 1427-2690 | 1427-2690 | 1427-2690 MHz

65° 1993 mm

# 5763470

5763470G 5763470Dx 6-Band, 12-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1993 mm

- Hexa band antenna, dual polarisation, 12 connectors
- Independent tilt on each band 2-12° / 2-12° / 2-12° / 2-12° / 2-12°
- MET and RET versions, 3GPP/AISG2.0, in multiple single RET (multiple device type1) or in Multi-RET (device type 17, with firmware above MD3.10).
- Our patented, RET module controlling all tilt angles, fully inserted inside the antenna (field replaceable).

|                  | Frequency Range (MHz)   | 698-803             | 880-960    | 698-960    | 1427-2690  | 1427-2690  | 1427-2690         |  |  |
|------------------|-------------------------|---------------------|------------|------------|------------|------------|-------------------|--|--|
| >                | Array                   | <b>E</b> R1         | <b>R</b> 2 | <b>R</b> 3 | <b>Y</b> 1 | <b>Y</b> 2 | <mark>_</mark> Y3 |  |  |
| PRODUCT OVERVIEW | Connector               | 1-2                 | 3-4        | 5-6        | 7-8        | 9-10       | 11-12             |  |  |
| CT OVI           | Polarization            | XPOL                | XPOL       | XPOL       | XPOL       | XPOL       | XPOL              |  |  |
| RODU             | Azimuth Beamwidth (avg) | 65°                 | 65°        | 65°        | 65°        | 65°        | 65°               |  |  |
| E                | Electrical Downtilt     | 2-12°               | 2-12°      | 2-12°      | 2-12°      | 2-12°      | 2-12°             |  |  |
|                  | Dimensions              | 1993 x 472 x 205 mm |            |            |            |            |                   |  |  |



## **ORDERING OPTIONS** Select from the different options listed below

| SELECT ELECTRICAL DOWNTILT<br>CONTROL & AISG PROTOCOL | SELECT<br>ACTUATOR                  | SELECT CONNECTOR<br>TYPE | ANTENNA MODEL<br>NUMBER |  |
|-------------------------------------------------------|-------------------------------------|--------------------------|-------------------------|--|
| Manual Electrical Tilt (MET)                          |                                     | 4.3-10 Female            | 5763470                 |  |
| Remote Electrical Tilt (RET)                          | Multi-Device Control Unit<br>(MDCU) | 4.3-10 Female            | 5763470G                |  |
| AISG v2.0 / 3GPP                                      | Multi-Device Dual Unit<br>(MDDU)    | 4.3-10 Female            | 5763470Dx*              |  |

\*Pre-commissioned configuration; Contact Amphenol for further details.





## 5763470

5763470G 5763470Dx 6-Band, 12-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1993 mm

| ELECTRICAL                         | SPECIFICATIONS Ultra             | a Low Band | <b>E</b> R1                    |
|------------------------------------|----------------------------------|------------|--------------------------------|
| Frequency Range                    |                                  | MHz        | 698-803                        |
| Polarization                       |                                  |            | ±45°                           |
| Gain C                             | Over all Tilts                   | dBi        | 14.0 ± 0.5                     |
| Azimuth Beamw                      | vidth                            | degrees    | $74.0^{\circ} \pm 4.8^{\circ}$ |
| Elevation Beam                     | width                            | degrees    | 11.0° ± 0.8°                   |
| Electrical Down                    | tilt                             | degrees    | 2°-12°                         |
| Impedance                          | Impedance                        |            | 50                             |
| VSWR                               |                                  |            | < 1.5                          |
| Passive Intermo<br>3rd Order for 2 |                                  | dBm        | < -110                         |
| Front-to-Back R                    | atio, Total Power, ±30°          | dB         | > 25.0                         |
| Upper Sidelobe                     | Suppression, Peak to 20°         | dB         | > 15.7                         |
| Cross Polar                        | Main Direction (0°)              | dB         | > 18.8                         |
| Discrimination<br>(XPD)            | Sector Edges (±60°)              | dB         | > 9.1                          |
| Maximum Effec                      | Maximum Effective Power Per Port |            | 250 W                          |
| Port-to-Port Isol                  | ation                            | dB         | > 25                           |
|                                    |                                  |            |                                |

Standard values based on NGMN-P-BASTA version 10.0 recommendation.

| ELECTRICAL                           | SPECIFICATIONS Ultra     | Low Band | <b>R</b> 2   |
|--------------------------------------|--------------------------|----------|--------------|
| Frequency Rang                       | Frequency Range          |          | 880-960      |
| Polarization                         |                          |          | ±45°         |
| Gain C                               | over all Tilts           | dBi      | 15.1 ± 0.6   |
| Azimuth Beamw                        | idth                     | degrees  | 59.8° ± 5.0° |
| Elevation Beam                       | width                    | degrees  | 8.9° ± 0.6°  |
| Electrical Downt                     | ilt                      | degrees  | 2°-12°       |
| Impedance                            |                          | Ohms     | 50           |
| VSWR                                 |                          |          | < 1.5        |
| Passive Intermo<br>3rd Order for 2 : |                          | dBm      | < -110       |
| Front-to-Back Ra                     | atio, Total Power, ±30°  | dB       | > 23.5       |
| Upper Sidelobe S                     | Suppression, Peak to 20° | dB       | > 15.1       |
| Cross Polar                          | Main Direction (0°)      | dB       | > 24.4       |
| Discrimination<br>(XPD)              | Sector Edges (±60°)      | dB       | > 6.9        |
| Maximum Effect                       | ive Power Per Port       | Watts    | 250 W        |
| Port-to-Port Isol                    | ation                    | dB       | > 25         |

Standard values based on NGMN-P-BASTA version 10.0 recommendation.



## 5763470

5763470G 5763470Dx

6-Band, 12-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1993 mm

| ELECTRICAL S                          | SPECIFICATIONS Ultra    | Low Band |                         | <b>R</b> 3   |              |  |  |
|---------------------------------------|-------------------------|----------|-------------------------|--------------|--------------|--|--|
| Frequency Range                       |                         | MHz      | 698-960                 |              |              |  |  |
|                                       |                         | MHz      | 698-806 790-862 880-960 |              |              |  |  |
| Polarization                          |                         |          |                         | ±45°         |              |  |  |
| Gain O                                | ver all Tilts           | dBi      | 14.2 ± 0.4              | 15.0 ± 0.5   | 15.5 ± 0.5   |  |  |
| Azimuth Beamwi                        | dth                     | degrees  | 74.5° ± 4.1°            | 68.9° ± 4.7° | 59.7° ± 4.3° |  |  |
| Elevation Beamv                       | vidth                   | degrees  | 11.4° ± 0.8°            | 10.1° ± 0.6° | 9.1° ± 0.5°  |  |  |
| Electrical Downt                      | ilt                     | degrees  | 2°-12°                  |              |              |  |  |
| Impedance                             |                         | Ohms     | 50                      |              |              |  |  |
| VSWR                                  |                         |          | < 1.5                   |              |              |  |  |
| Passive Intermoo<br>3rd Order for 2 × |                         | dBm      | < -110                  |              |              |  |  |
| Front-to-Back Ra                      | tio, Total Power, ±30°  | dB       | > 25.5                  | > 23.8       | > 25.3       |  |  |
| Upper Sidelobe S                      | uppression, Peak to 20° | dB       | > 17.3                  | > 16.5       | > 14.3       |  |  |
| Cross Polar                           | Main Direction (0°)     | dB       | > 19.9                  | > 22.0       | > 23.5       |  |  |
| Discrimination<br>(XPD)               | Sector Edges (±60°)     | dB       | > 9.2                   | > 8.4        | > 7.4        |  |  |
| Maximum Effective Power Per Port      |                         | Watts    | 250 W                   |              |              |  |  |
| Port-to-Port Isola                    | ation                   | dB       | > 25                    |              |              |  |  |

Standard values based on NGMN-P-BASTA version 10.0 recommendation.

| ELECTRICA                        | L SPECIFICATIONS MEG           | A Wide Band |              | <mark> </mark> |              |              |              |  |
|----------------------------------|--------------------------------|-------------|--------------|----------------|--------------|--------------|--------------|--|
| Frequency Range                  |                                | MHz         | 1427-2690    |                |              |              |              |  |
|                                  | 0                              | MHz         | 1427-1518    | 2300-2500      | 2490-2690    |              |              |  |
| Polarization                     |                                |             |              |                | ±45°         |              | ·            |  |
| Gain                             | Over all Tilts                 | dBi         | 15.7 ± 0.5   | 17.0 ± 0.5     | 17.2 ± 0.4   | 17.1 ± 0.5   | 17.3 ± 0.4   |  |
| Azimuth Bean                     | nwidth                         | degrees     | 69.4° ± 4.6° | 68.4° ± 3.2°   | 66.0° ± 3.6° | 64.0° ± 5.2° | 62.1° ± 5.0° |  |
| Elevation Beamwidth              |                                | degrees     | 8.5° ± 0.6°  | 7.1° ± 0.4°    | 6.1° ± 0.6°  | 5.4° ± 0.2°  | 4.9° ± 0.3°  |  |
| Electrical Downtilt              |                                | degrees     | 2°-12°       |                |              |              |              |  |
| Impedance                        |                                | Ohms        | 50           |                |              |              |              |  |
| VSWR                             |                                |             | < 1.5        |                |              |              |              |  |
| Passive Interm<br>3rd Order for  | nodulation<br>2 x 20W Carriers | dBm         | < -110       |                |              |              |              |  |
| Front-to-Back                    | Ratio, Total Power, ±30°       | dB          | > 24.2       | > 26.5         | > 28.8       | > 26.5       | > 25.6       |  |
| Upper Sidelob                    | e Suppression, Peak to 20°     | dB          | > 15.7       | > 15.9         | > 17.2       | > 14.0       | > 14.9       |  |
| Cross Polar                      | Main Direction (0°)            | dB          | > 22.4       | > 20.4         | > 19.7       | > 22.8       | > 16.4       |  |
| Discrimination<br>(XPD)          | Sector Edges (±60°)            | dB          | > 10.2       | > 8.3          | > 7.9        | > 6.8        | > 6.7        |  |
| Maximum Effective Power Per Port |                                | Watts       | 200 W        |                |              |              |              |  |
| Port-to-Port Is                  | solation                       | dB          | > 25         |                |              |              |              |  |

Standard values based on NGMN-P-BASTA version 10.0 recommendation.



Y2

Y3

65° 1993 mm

## 5763470

5763470G 5763470Dx

6-Band, 12-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1993 mm

#### ELECTRICAL SPECIFICATIONS MEGA Wide Band

| Frequency Range<br>Polarization  |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                     | 1427-2690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                                                                                                                                                                                              | 1427-1518                                                                                                                                                                                                                                                                                                                                                        | 1695-1880                                                                                                                           | 1920-2180                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2300-2500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2490-2690                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  |                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                  | ,                                                                                                                                   | ±45°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| er all Tilts                     | dBi                                                                                                                                                                                          | 15.6 ± 0.5                                                                                                                                                                                                                                                                                                                                                       | 17.1 ± 0.5                                                                                                                          | 17.4 ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 16.9 ± 0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 17.4 ± 0.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| dth                              | degrees                                                                                                                                                                                      | $71.4^{\circ} \pm 4.6^{\circ}$                                                                                                                                                                                                                                                                                                                                   | 61.4° ± 4.5°                                                                                                                        | 60.2° ± 4.8°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 63.5° ± 3.1°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 64.3° ± 4.9°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| vidth                            | degrees                                                                                                                                                                                      | 7.1° ± 0.4°                                                                                                                                                                                                                                                                                                                                                      | $6.0^{\circ} \pm 0.4^{\circ}$                                                                                                       | 5.3° ± 0.4°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.8° ± 0.3°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $4.2^{\circ} \pm 0.3^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lt                               | degrees                                                                                                                                                                                      | 2°-12°                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Impedance                        |                                                                                                                                                                                              | 50                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| VSWR                             |                                                                                                                                                                                              | < 1.5                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| lulation<br>20W Carriers         | dBm                                                                                                                                                                                          | < -110                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tio, Total Power, ±30°           | dB                                                                                                                                                                                           | > 28.9                                                                                                                                                                                                                                                                                                                                                           | > 27.0                                                                                                                              | > 28.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > 28.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > 28.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| uppression, Peak to 20°          | dB                                                                                                                                                                                           | > 14.2                                                                                                                                                                                                                                                                                                                                                           | > 14.8                                                                                                                              | > 15.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > 14.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > 14.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Main Direction (0°)              | dB                                                                                                                                                                                           | > 19.8                                                                                                                                                                                                                                                                                                                                                           | > 16.0                                                                                                                              | > 15.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | > 16.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | > 13.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sector Edges (±60°)              | dB                                                                                                                                                                                           | > 10.9                                                                                                                                                                                                                                                                                                                                                           | > 11.0                                                                                                                              | > 7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | > 9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | > 7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Maximum Effective Power Per Port |                                                                                                                                                                                              | 200 W                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| tion                             | dB                                                                                                                                                                                           | > 25                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                  | er all Tilts<br>dth<br>idth<br>idth<br>lt<br>ulation<br>20W Carriers<br>tio, Total Power, ±30°<br>uppression, Peak to 20°<br>Main Direction (0°)<br>Sector Edges (±60°)<br>ve Power Per Port | MHz       er all Tilts     dBi       dth     degrees       idth     degrees       idth     degrees       idth     degrees       value     Ohms       20W Carriers     dB       ulation     dB       20W Carriers     dB       uppression, Peak to 20°     dB       Main Direction (0°)     dB       Sector Edges (±60°)     dB       ve Power Per Port     Watts | MHz1427-1518er all TiltsdBi15.6 $\pm$ 0.5dthdegrees71.4° $\pm$ 4.6°idthdegrees7.1° $\pm$ 0.4°idthdegrees7.1° $\pm$ 0.4°tdegrees0hms | MHz         1427-1518         1695-1880              er all Tilts         dBi         15.6 $\pm$ 0.5         17.1 $\pm$ 0.5           dth         degrees         71.4° $\pm$ 4.6°         61.4° $\pm$ 4.5°           idth         degrees         7.1° $\pm$ 0.4°         6.0° $\pm$ 0.4°           otype         dBm         20.4°         7.0°           idton         0.0°         dB         > 14.2         > 14.8° | MHz1427-15181695-18801920-2180 $\pm 45^{\circ}$ er all TiltsdBi15.6 $\pm$ 0.517.1 $\pm$ 0.517.4 $\pm$ 0.5ddgrees71.4° $\pm$ 4.6°61.4° $\pm$ 4.5°60.2° $\pm$ 4.8°idthdegrees7.1° $\pm$ 0.4°6.0° $\pm$ 0.4°5.3° $\pm$ 0.4°tdegrees7.1° $\pm$ 0.4°6.0° $\pm$ 0.4°5.3° $\pm$ 0.4°ttttdegreesTcolspan="4">tttttttdegreestcolspan="4">tttttt <td <="" colspan="4" td=""><td>MHz1427-15181695-18801920-21802300-2500er all TiltsdBi<math>15.6 \pm 0.5</math><math>17.1 \pm 0.5</math><math>17.4 \pm 0.5</math><math>16.9 \pm 0.3</math>dthdegrees<math>71.4^{\circ} \pm 4.6^{\circ}</math><math>61.4^{\circ} \pm 4.5^{\circ}</math><math>60.2^{\circ} \pm 4.8^{\circ}</math><math>63.5^{\circ} \pm 3.1^{\circ}</math>idth<math>71.4^{\circ} \pm 4.6^{\circ}</math><math>61.4^{\circ} \pm 4.5^{\circ}</math><math>60.2^{\circ} \pm 4.8^{\circ}</math><math>63.5^{\circ} \pm 3.1^{\circ}</math>idth2°-12°Ohms50ulationvold GBm&gt;27.0&gt;28.320W Carriersvold GBm&gt;14.2vold GBmvold GBm&gt;27.0&gt;28.3outputdegreesvold GBm&gt;14.2vold GBmvold GBm&gt;27.0vold GBm&gt;14.2Main Direction (0°)dB</td></td> | <td>MHz1427-15181695-18801920-21802300-2500er all TiltsdBi<math>15.6 \pm 0.5</math><math>17.1 \pm 0.5</math><math>17.4 \pm 0.5</math><math>16.9 \pm 0.3</math>dthdegrees<math>71.4^{\circ} \pm 4.6^{\circ}</math><math>61.4^{\circ} \pm 4.5^{\circ}</math><math>60.2^{\circ} \pm 4.8^{\circ}</math><math>63.5^{\circ} \pm 3.1^{\circ}</math>idth<math>71.4^{\circ} \pm 4.6^{\circ}</math><math>61.4^{\circ} \pm 4.5^{\circ}</math><math>60.2^{\circ} \pm 4.8^{\circ}</math><math>63.5^{\circ} \pm 3.1^{\circ}</math>idth2°-12°Ohms50ulationvold GBm&gt;27.0&gt;28.320W Carriersvold GBm&gt;14.2vold GBmvold GBm&gt;27.0&gt;28.3outputdegreesvold GBm&gt;14.2vold GBmvold GBm&gt;27.0vold GBm&gt;14.2Main Direction (0°)dB</td> |  |  |  | MHz1427-15181695-18801920-21802300-2500er all TiltsdBi $15.6 \pm 0.5$ $17.1 \pm 0.5$ $17.4 \pm 0.5$ $16.9 \pm 0.3$ dthdegrees $71.4^{\circ} \pm 4.6^{\circ}$ $61.4^{\circ} \pm 4.5^{\circ}$ $60.2^{\circ} \pm 4.8^{\circ}$ $63.5^{\circ} \pm 3.1^{\circ}$ idth $71.4^{\circ} \pm 4.6^{\circ}$ $61.4^{\circ} \pm 4.5^{\circ}$ $60.2^{\circ} \pm 4.8^{\circ}$ $63.5^{\circ} \pm 3.1^{\circ}$ idth $71.4^{\circ} \pm 4.6^{\circ}$ $61.4^{\circ} \pm 4.5^{\circ}$ $60.2^{\circ} \pm 4.8^{\circ}$ $63.5^{\circ} \pm 3.1^{\circ}$ idth $71.4^{\circ} \pm 4.6^{\circ}$ $61.4^{\circ} \pm 4.5^{\circ}$ $60.2^{\circ} \pm 4.8^{\circ}$ $63.5^{\circ} \pm 3.1^{\circ}$ idth $71.4^{\circ} \pm 4.6^{\circ}$ $61.4^{\circ} \pm 4.5^{\circ}$ $60.2^{\circ} \pm 4.8^{\circ}$ $63.5^{\circ} \pm 3.1^{\circ}$ idth2°-12°Ohms50ulationvold GBm>27.0>28.320W Carriersvold GBm>14.2vold GBmvold GBm>27.0>28.3outputdegreesvold GBm>14.2vold GBmvold GBm>27.0vold GBm>14.2Main Direction (0°)dB |

Standard values based on NGMN-P-BASTA version 10.0 recommendation.

#### ELECTRICAL SPECIFICATIONS MEGA Wide Band

| Frequency Ran                      | ge                          | MHz     |                               |              | 1427-2690    |              |              |  |
|------------------------------------|-----------------------------|---------|-------------------------------|--------------|--------------|--------------|--------------|--|
|                                    |                             | MHz     | 1427-1518                     | 1695-1880    | 1920-2180    | 2300-2500    | 2490-2690    |  |
| Polarization                       |                             |         |                               |              | ±45°         |              |              |  |
| Gain (                             | Over all Tilts              | dBi     | 15.7 ± 0.5                    | 17.0 ± 0.5   | 17.2 ± 0.5   | 16.8 ± 0.4   | 17.2 ± 0.5   |  |
| Azimuth Beam                       | width                       | degrees | 69.0° ± 4.8°                  | 69.2° ± 3.3° | 66.5° ± 3.2° | 64.3° ± 4.1° | 62.1° ± 4.9° |  |
| Elevation Beam                     | nwidth                      | degrees | $8.4^{\circ} \pm 0.6^{\circ}$ | 7.1° ± 0.4°  | 6.2° ± 0.6°  | 5.4° ± 0.2°  | 5.0° ± 0.3°  |  |
| Electrical Dowr                    | ntilt                       | degrees | 2°-12°                        |              |              |              |              |  |
| Impedance                          |                             | Ohms    | 50                            |              |              |              |              |  |
| VSWR                               |                             |         | < 1.5                         |              |              |              |              |  |
| Passive Intermo<br>3rd Order for 2 | odulation<br>x 20W Carriers | dBm     | < -110                        |              |              |              |              |  |
| Front-to-Back F                    | Ratio, Total Power, ±30°    | dB      | > 23.8                        | > 27.5       | > 29.4       | > 27.9       | > 26.3       |  |
| Upper Sidelobe                     | Suppression, Peak to 20°    | dB      | > 16.9                        | > 17.8       | > 17.1       | > 14.0       | > 14.7       |  |
| Cross Polar                        | Main Direction (0°)         | dB      | > 17.3                        | > 20.0       | > 19.2       | > 21.9       | > 18.6       |  |
| Discrimination<br>(XPD)            | Sector Edges (±60°)         | dB      | > 9.6                         | > 8.2        | > 8.3        | > 6.6        | > 6.8        |  |
| Maximum Effective Power Per Port   |                             | Watts   | 200 W                         |              |              |              |              |  |
| Port-to-Port Isc                   | olation                     | dB      | > 25                          |              |              |              |              |  |
|                                    |                             | · · ·   |                               |              |              |              |              |  |

Standard values based on NGMN-P-BASTA version 10.0 recommendation.



**5763470** 5763470G 5763470Dx 6-Band, 12-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1993 mm

#### ELECTRICAL DOWNTILT CONTROL

| For multiband antennas, electrical downtilt for each band can be controlled separately. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Manual Electrical Tilt (MET)<br>Control                                                 | A colored knob at the end of the tilt indicator allows change of the tilt without need of a tool. The knob color is identical to the corresponding connector color. The manual tilt 'override' function is always available with no need to remove the physical RET motor.                                                                                                                                                                                                   |  |  |  |
| Remote Electrical Tilt (RET)<br>Control                                                 | The remote control of the electrical tilt is managed by a Multi-Device Control Unit (MDCU) or a Multi-Device Dual Unit (MDDU) inserted in the bottom of the antenna. See details below and refer to the ordering options to see which actuators are available with this particular antenna. A single actuator individually controls the tilt of each band (no need for daisy chain cables between the bands). This module does not add any additional length to the antenna. |  |  |  |

#### **RET ACTUATOR**

Amphenol's **RET-READY** antennas are delivered with the RET Actuator already installed and pre-commissioned with all antenna parameters. Every RET device is factory configured and calibrated so the antenna is ready to be used once delivered to the site which means that there is no need for further installation of RET devices or for programming their configuration or for running a calibration process.

 

 RET-READY ACTUATORS
 Multi-Device Control Unit (MDCU). The MDCU is an electronic module that allows the remote control of the electrical downtilt (RET) in Amphenol antennas with factory embedded motors. The MDCU is factory installed. Refer to the ORDERING OPTIONS for availability with this model.

 Multi-Device Dual Unit (MDDU). The MDDU allows two separate RET Controllers to independently drive the RETs in antennas with

factory embedded motors (for antenna sharing or two technologies). The MDDU is factory installed. *Refer to the* ORDERING OPTIONS for availability with this model.

| Number of RET-READY Actuators          |                           | One per antenna                                                                            |  |  |
|----------------------------------------|---------------------------|--------------------------------------------------------------------------------------------|--|--|
| Input Voltage                          |                           | +10 to +30 V                                                                               |  |  |
| Power Consumption Idle State (AISG P1) |                           | 0.5 W                                                                                      |  |  |
|                                        | High Power Mode (AISG P2) | 3 W                                                                                        |  |  |
| Protocol                               |                           | 3GPP/AISG 2.0                                                                              |  |  |
| Tilt Change Duration                   |                           | Less than 15 seconds, typical (may vary dependent on antenna type and outdoor temperature) |  |  |
| Precision                              |                           | ±0.5°                                                                                      |  |  |
| Tilt Change Capability                 |                           | 50,000 minimum                                                                             |  |  |
| MDCU                                   |                           | One pair of AISG Male and Female (type IEC60130-9)                                         |  |  |
| RET Interface                          | MDDU                      | Two male AISG 8 pin connectors (type IEC60130-9 Ed 3.0)                                    |  |  |
| Field Replaceable Unit                 |                           | Yes                                                                                        |  |  |



# 698-803 | 880-960 | 698-960 | 1427-2690 | 1427-2690 | 1427-2690 MHz

65° 1993 mm

5763470

5763470G 5763470Dx 6-Band, 12-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1993 mm



|          | Тор    |       |
|----------|--------|-------|
| R2       |        | R3    |
| Y1<br>R1 | Y2     | Y3    |
| Left     | Bottom | Right |

|        | ARRAY             | FREQUENCY | CONNECTOR | CONNECTOR TYPE |
|--------|-------------------|-----------|-----------|----------------|
| 5      | <b>R</b> 1        | 698-803   | 1-2       | 4.3-10 Female  |
| LAYOUT | <b>R</b> 2        | 880-960   | 3-4       | 4.3-10 Female  |
|        | <b>R</b> 3        | 698-960   | 5-6       | 4.3-10 Female  |
| ARRAY  | <mark>_</mark> Y1 | 1427-2690 | 7-8       | 4.3-10 Female  |
| AF     | <mark></mark> Y2  | 1427-2690 | 9-10      | 4.3-10 Female  |
|        | <mark>_</mark> Y3 | 1427-2690 | 11-12     | 4.3-10 Female  |

Diagram shown at right depicts the view from the front of the antenna. The illustration is not shown to scale.

### **MECHANICAL SPECIFICATIONS**

| Length                                      |                                                        |             | mm (in)                           | 1993 (78.4)                           |  |  |  |
|---------------------------------------------|--------------------------------------------------------|-------------|-----------------------------------|---------------------------------------|--|--|--|
| Width                                       |                                                        |             | mm (in)                           | 472 (18.6)                            |  |  |  |
| Depth                                       |                                                        |             | mm (in)                           | 205 (8.0)                             |  |  |  |
| Net Weight - Antenna Only                   |                                                        |             | kg (lbs)                          | 46 (101.4)                            |  |  |  |
| Mechanical Distance Between Mounting Points |                                                        |             | mm (in)                           | Refer to Diagram                      |  |  |  |
| Windle                                      | lload<br>1991-1-4:2005 using<br>I Tunnel Coefficients) | Calculation | km/h (mph)                        | 150 (93.2)                            |  |  |  |
|                                             |                                                        | Frontal     | N (lbf)                           | 735 (165.2)                           |  |  |  |
| •                                           |                                                        | Lateral     | N (lbf)                           | 466 (104.7)                           |  |  |  |
|                                             |                                                        | Rearside    | N (lbf)                           | 740 (166.3)                           |  |  |  |
| Operational Wind Speed                      |                                                        |             | km/h (mph)                        | 160 (99.4)                            |  |  |  |
| Survival Wind Speed                         |                                                        |             | km/h (mph)                        | 200 (124)                             |  |  |  |
| Radome Color                                |                                                        |             |                                   | Gray RAL7035                          |  |  |  |
| Radome Material                             |                                                        |             |                                   | Outdoor Fiberglass                    |  |  |  |
| Lightning Protection                        |                                                        |             |                                   | Direct Ground                         |  |  |  |
| Shipping                                    | Shipping Dimensions (Length x Width x Depth)           |             | mm (in)                           | 2235 x 540 x 370 (87.9 x 21.2 x 14.5) |  |  |  |
|                                             | Shipping Weight                                        |             | kg (lbs)                          | 57 (125.6)                            |  |  |  |
|                                             | Shipping Volume                                        |             | m <sup>3</sup> (ft <sup>3</sup> ) | 0.447 (15.7)                          |  |  |  |
|                                             |                                                        |             | 1 1                               |                                       |  |  |  |



## 5763470

5763470G 5763470Dx 6-Band, 12-Port, 65°, XPOL, Panel Antenna, Variable Tilt, 1993 mm

### **ENVIRONMENTAL SPECIFICATIONS**

| Environmental Standard           |           | ETS 300 019                 |  |
|----------------------------------|-----------|-----------------------------|--|
| Operating Temperature            | ° C (° F) | -40° to +60° (-40° to 140°) |  |
| Product Environmental Compliance |           | Product is RoHs Compliant   |  |

ACCESSORIES All accessories are ordered separately unless otherwise indicated

| ITEM                                                                            | MODEL NUMBER | WEIGHT           |
|---------------------------------------------------------------------------------|--------------|------------------|
| Brackets for pole Ø48 to Ø115 mm (Ø1.9 to Ø4.5 in) <i>delivered as standard</i> | O8464        | 3.4 kg (7.5 lbs) |
| Brackets for pole Ø70 to Ø150 mm (Ø2.8-Ø5.9 in) <b>optional</b>                 | O8465        | 3.9 kg (8.6 lbs) |
| Kit to add mechanical tilt (0° to 10°) to above brackets <b>optional</b>        | 0900397/00   | 2.3 kg (5.1 lbs) |

**INSTALLATION** Please read all installation notes before installing this product.



Always attach the antenna by all mounting points.

Do not install the antenna with the connectors facing upwards.



